Self-discharge prediction method for lithium-ion batteries based on improved support vector machine

支持向量机 锂(药物) 离子 计算机科学 可靠性工程 材料科学 机器学习 工程类 化学 心理学 精神科 有机化学
作者
Zhengyu Liu,Huijuan He,Juan Xie,Keqing Wang,Wei Huang
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:55: 105571-105571 被引量:13
标识
DOI:10.1016/j.est.2022.105571
摘要

An improved support vector regression (SVR) method is proposed for predicting the self-discharge voltage drop (SDV-drop) in lithium-ion batteries. Multiple features were extracted according to the charge and discharge curves of lithium-ion batteries, and the three features having the strongest correlation with the SDV-drop were identified via grey relational analysis. Then, these three features were assigned different weight parameters to obtain composite features which were input into the improved support vector machine through differential evolution algorithm parameter optimization training. Finally, the improved SVR model was obtained. Model training and testing were performed via a battery charge and discharge experiment and battery static experimental data of a new energy vehicle company, and the results indicated that the proposed method had a higher prediction accuracy than the neural-network model and the Gaussian process regression model. • A fast and economical method for self-discharge voltage drop prediction is proposed. • The self-discharge voltage drop is estimated by extracting the features of the charge and discharge curves. • This method can estimate the self-discharge voltage drop and pick out the defective battery. • This method is verified by experiment and simulation with good accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zinnn发布了新的文献求助50
刚刚
277完成签到 ,获得积分10
刚刚
张张发布了新的文献求助10
刚刚
认真夜云完成签到,获得积分10
刚刚
刚刚
发呆小蜗发布了新的文献求助10
1秒前
max完成签到,获得积分10
1秒前
Cruffin发布了新的文献求助10
2秒前
阿伦发布了新的文献求助10
2秒前
跳跃的邪欢完成签到,获得积分10
3秒前
热水泡jio发布了新的文献求助10
4秒前
4秒前
bxyyy应助忧伤的映阳采纳,获得10
4秒前
4秒前
一天发布了新的文献求助30
4秒前
5秒前
烟花应助自由大叔采纳,获得10
5秒前
5秒前
chlorine发布了新的文献求助20
5秒前
6秒前
磁带机完成签到,获得积分10
6秒前
机智的乌完成签到,获得积分10
7秒前
昏睡的蟠桃给洒松雪的求助进行了留言
7秒前
卡拉米完成签到,获得积分10
7秒前
8秒前
8秒前
鲤角兽发布了新的文献求助10
8秒前
深情安青应助一颗星采纳,获得10
8秒前
bxyyy应助一颗星采纳,获得10
8秒前
bxyyy应助一颗星采纳,获得10
8秒前
9秒前
9秒前
Chelsea完成签到,获得积分10
9秒前
skysleeper完成签到,获得积分10
10秒前
大模型应助热爱采纳,获得10
10秒前
旦旦完成签到,获得积分10
10秒前
10秒前
研友_VZG7GZ应助hou采纳,获得10
10秒前
刘亿应助cyz采纳,获得10
11秒前
尤川完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958492
求助须知:如何正确求助?哪些是违规求助? 3504758
关于积分的说明 11120028
捐赠科研通 3236093
什么是DOI,文献DOI怎么找? 1788616
邀请新用户注册赠送积分活动 871249
科研通“疑难数据库(出版商)”最低求助积分说明 802625