Self-discharge prediction method for lithium-ion batteries based on improved support vector machine

支持向量机 锂(药物) 离子 计算机科学 可靠性工程 材料科学 机器学习 工程类 化学 心理学 精神科 有机化学
作者
Zhengyu Liu,Huijuan He,Juan Xie,Keqing Wang,Wei Huang
出处
期刊:Journal of energy storage [Elsevier]
卷期号:55: 105571-105571 被引量:13
标识
DOI:10.1016/j.est.2022.105571
摘要

An improved support vector regression (SVR) method is proposed for predicting the self-discharge voltage drop (SDV-drop) in lithium-ion batteries. Multiple features were extracted according to the charge and discharge curves of lithium-ion batteries, and the three features having the strongest correlation with the SDV-drop were identified via grey relational analysis. Then, these three features were assigned different weight parameters to obtain composite features which were input into the improved support vector machine through differential evolution algorithm parameter optimization training. Finally, the improved SVR model was obtained. Model training and testing were performed via a battery charge and discharge experiment and battery static experimental data of a new energy vehicle company, and the results indicated that the proposed method had a higher prediction accuracy than the neural-network model and the Gaussian process regression model. • A fast and economical method for self-discharge voltage drop prediction is proposed. • The self-discharge voltage drop is estimated by extracting the features of the charge and discharge curves. • This method can estimate the self-discharge voltage drop and pick out the defective battery. • This method is verified by experiment and simulation with good accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cynicism发布了新的文献求助10
1秒前
Snow完成签到,获得积分10
1秒前
子车茗应助洛苏采纳,获得20
1秒前
栓Q发布了新的文献求助10
2秒前
2秒前
浮游应助HHHHH采纳,获得10
4秒前
4秒前
嗯呢完成签到 ,获得积分10
4秒前
铁铁完成签到,获得积分10
4秒前
5秒前
个性的智宸完成签到,获得积分10
5秒前
7秒前
充电宝应助流云采纳,获得10
7秒前
伟峰完成签到,获得积分10
8秒前
8秒前
十月_i发布了新的文献求助20
8秒前
田様应助迷路的曼凡采纳,获得10
8秒前
9秒前
9秒前
9秒前
杨秋芸发布了新的文献求助10
9秒前
pluto应助漂亮的孤丹采纳,获得10
10秒前
10秒前
所所应助大鸟依人采纳,获得10
10秒前
11秒前
Vicki发布了新的文献求助10
11秒前
远方完成签到,获得积分10
11秒前
小沈最美完成签到,获得积分10
11秒前
张一凡完成签到,获得积分10
12秒前
科研通AI6应助阿斌采纳,获得10
13秒前
维他奶发布了新的文献求助10
13秒前
13秒前
yukiytii关注了科研通微信公众号
13秒前
13秒前
14秒前
drughunter009完成签到 ,获得积分10
14秒前
yiyi131发布了新的文献求助10
14秒前
14秒前
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5343316
求助须知:如何正确求助?哪些是违规求助? 4478987
关于积分的说明 13941205
捐赠科研通 4375914
什么是DOI,文献DOI怎么找? 2404365
邀请新用户注册赠送积分活动 1396915
关于科研通互助平台的介绍 1369240