数学
李超代数
同构(结晶学)
泊松分布
超代数
纯数学
块(置换群论)
李代数
组合数学
域代数上的
仿射李代数
当前代数
晶体结构
结晶学
化学
统计
作者
Ivan Kaygorodov,Mykola Khrypchenko
标识
DOI:10.1016/j.laa.2022.09.024
摘要
We describe transposed Poisson algebra structures on Block Lie algebras B ( q ) and Block Lie superalgebras S ( q ) , where q is an arbitrary complex number. Specifically, we show that the transposed Poisson structures on B ( q ) are trivial whenever q ∉ Z , and for each q ∈ Z there is only one (up to an isomorphism) non-trivial transposed Poisson structure on B ( q ) . The superalgebra S ( q ) admits only trivial transposed Poisson superalgebra structures for q ≠ 0 and two non-isomorphic non-trivial transposed Poisson superalgebra structures for q = 0 . As a consequence, new Lie algebras and superalgebras that admit non-trivial Hom-Lie algebra structures are found.
科研通智能强力驱动
Strongly Powered by AbleSci AI