Development of high-resolution annual climate surfaces for Turkey using ANUSPLIN and comparison with other methods

均方误差 反距离权重法 克里金 统计 标准差 多元插值 数学 均方根 地形 平均辐射温度 花键(机械) 平均绝对误差 环境科学 气候变化 地理 地质学 工程类 电气工程 海洋学 结构工程 双线性插值 地图学
作者
İsmet YENER
出处
期刊:Atmosfera [Centro de Ciencias de la Atmosfera]
卷期号:37: 425-444 被引量:3
标识
DOI:10.20937/atm.53189
摘要

Many climate models have been developed due to the importance of the effects of climatic factors on the physical and biological environment, e.g., rock weathering, species distribution, and growth patterns of plants. Accurate, reliable climate surfaces are necessary, especially for countries such as Turkey, which has a complex terrain and limited monitoring stations. The accuracy of these models mainly depends on the spatial modeling methods used. In this study, the Australian National University Spline (ANUSPLIN) model was used to develop climate surfaces and was compared with other methods such as inverse distance weighting, co-kriging, lapse rate, and multilinear regression. The results from the developed climate surfaces were validated using three methods: (1) diagnostic statistics from the surface fitting model, such as signal, mean, root mean square predictive error, root mean square error estimate, root mean square residual of the spline, and estimate of the standard deviation of the noise in the spline; (2) a comparison of error statistics between interpolated surfaces and the withheld climate data from 81 stations; and (3) a comparison with other interpolation methods using model performance metrics, such as mean absolute error, mean error, root mean square error, and R2adj. The most accurate results were obtained by the ANUSPLIN model. It explained 95, 88, 92, and 71% of the variance in annual mean, minimum and maximum temperature, and total precipitation, respectively. The mean absolute error of these models was 0.63, 1.16, and 0.72 ºC, as well as 54.82 mm. The generated climate surfaces, having a spatial resolution of 0.005º × 0.005º could contribute to the fields of forestry, agriculture, and hydrology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助zhappy采纳,获得20
刚刚
1秒前
xg发布了新的文献求助10
1秒前
2秒前
Tophet完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
FashionBoy应助落落采纳,获得10
4秒前
活力的青枫完成签到 ,获得积分10
4秒前
苏素肃发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
空禅yew发布了新的文献求助10
6秒前
汉堡包应助花开的声音1217采纳,获得10
6秒前
ying发布了新的文献求助10
6秒前
animenz完成签到,获得积分10
7秒前
tY发布了新的文献求助10
8秒前
OJL发布了新的文献求助10
8秒前
8秒前
8秒前
柒柒完成签到,获得积分10
8秒前
丘比特应助111采纳,获得10
9秒前
10秒前
10秒前
XShu完成签到,获得积分20
10秒前
xx完成签到 ,获得积分10
11秒前
羊知鱼完成签到,获得积分10
12秒前
公茂源发布了新的文献求助30
12秒前
搞怪不言发布了新的文献求助10
13秒前
DDDD完成签到,获得积分10
13秒前
陈莹发布了新的文献求助10
13秒前
执着的幻柏完成签到,获得积分10
13秒前
14秒前
14秒前
苏素肃完成签到,获得积分10
14秒前
隐形曼青应助sw98318采纳,获得10
15秒前
wangyanwxy发布了新的文献求助10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808