Confounder-adjusted MRI-based predictors of multiple sclerosis disability

医学 混淆 萎缩 多发性硬化 队列 大脑大小 内科学 磁共振成像 放射科 精神科
作者
Yujin Kim,Mihael Varosanec,Péter Kósa,Bibiana Bielekova
出处
期刊:Frontiers in radiology [Frontiers Media SA]
卷期号:2 被引量:1
标识
DOI:10.3389/fradi.2022.971157
摘要

Both aging and multiple sclerosis (MS) cause central nervous system (CNS) atrophy. Excess brain atrophy in MS has been interpreted as "accelerated aging." Current paper tests an alternative hypothesis: MS causes CNS atrophy by mechanism(s) different from physiological aging. Thus, subtracting effects of physiological confounders on CNS structures would isolate MS-specific effects.Standardized brain MRI and neurological examination were acquired prospectively in 646 participants enrolled in ClinicalTrials.gov Identifier: NCT00794352 protocol. CNS volumes were measured retrospectively, by automated Lesion-TOADS algorithm and by Spinal Cord Toolbox, in a blinded fashion. Physiological confounders identified in 80 healthy volunteers were regressed out by stepwise multiple linear regression. MS specificity of confounder-adjusted MRI features was assessed in non-MS cohort (n = 158). MS patients were randomly split into training (n = 277) and validation (n = 131) cohorts. Gradient boosting machine (GBM) models were generated in MS training cohort from unadjusted and confounder-adjusted CNS volumes against four disability scales.Confounder adjustment highlighted MS-specific progressive loss of CNS white matter. GBM model performance decreased substantially from training to cross-validation, to independent validation cohorts, but all models predicted cognitive and physical disability with low p-values and effect sizes that outperform published literature based on recent meta-analysis. Models built from confounder-adjusted MRI predictors outperformed models from unadjusted predictors in the validation cohort.GBM models from confounder-adjusted volumetric MRI features reflect MS-specific CNS injury, and due to stronger correlation with clinical outcomes compared to brain atrophy these models should be explored in future MS clinical trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
潇潇雨歇完成签到,获得积分10
1秒前
小二郎应助圣晟胜采纳,获得10
1秒前
dianatseng14发布了新的文献求助10
2秒前
2秒前
yaoyy发布了新的文献求助10
2秒前
左友铭发布了新的文献求助10
2秒前
T=T生物完成签到,获得积分10
2秒前
海孩子完成签到,获得积分10
4秒前
潇潇雨歇发布了新的文献求助10
5秒前
领导范儿应助YYJ25采纳,获得10
5秒前
kldxxb发布了新的文献求助10
6秒前
Lynnyue发布了新的文献求助10
7秒前
科研通AI5应助诸笑白采纳,获得10
7秒前
余先生发布了新的文献求助10
8秒前
rosexu发布了新的文献求助10
8秒前
9秒前
9秒前
9秒前
yuuuu01完成签到,获得积分10
11秒前
完美世界应助左友铭采纳,获得10
12秒前
老老实实好好活着完成签到,获得积分10
12秒前
13秒前
xcc完成签到 ,获得积分10
13秒前
健忘捕发布了新的文献求助10
13秒前
chengqin完成签到 ,获得积分10
14秒前
16秒前
Akim应助圣晟胜采纳,获得10
18秒前
xcc发布了新的文献求助10
18秒前
丘比特应助TT采纳,获得10
18秒前
研友_LpAbjn完成签到,获得积分10
19秒前
FashionBoy应助YYJ25采纳,获得10
19秒前
英俊的铭应助GOD伟采纳,获得10
21秒前
21秒前
潇潇雨歇发布了新的文献求助10
21秒前
余先生完成签到,获得积分10
21秒前
22秒前
星梦完成签到 ,获得积分10
24秒前
问之完成签到,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849