Machine-learning model for prediction of martensitic transformation temperature in NiMnSn-based ferromagnetic shape memory alloys

形状记忆合金 无扩散变换 铁磁性 材料科学 支持向量机 一般化 转化(遗传学) 人工智能 交叉验证 计算机科学 随机森林 机器学习 马氏体 特征(语言学) 算法 冶金 凝聚态物理 数学 数学分析 微观结构 化学 物理 基因 哲学 生物化学 语言学
作者
Xiaohua Tian,Dingding Shi,Kun Zhang,Hong-Xing Li,Zhou Li-wen,Tianyou Ma,Cheng Wang,Qinlong Wen,Changlong Tan
出处
期刊:Computational Materials Science [Elsevier]
卷期号:215: 111811-111811 被引量:21
标识
DOI:10.1016/j.commatsci.2022.111811
摘要

• XGBRegressor (XGBR) model is demonstrated to accurately predict the martensitic transformation temperature ( T M ) of NiMnSn-based ferromagnetic shape memory alloys (FSMAs). • We find that a combination of features Numa , Arc , and avg Ven can effectively improve the fitting effect ( R 2 = 0.903) of XGBR model. • K-fold Cross-Validation is used to prove that the XGBR model shows high generalization ability ( R 5 f 2 = 0.869 and R 3 f 2 = 0.838) on small data sets and can be used to predict unknown T M of NiMnSn-based FSMAs. Martensitic transformation temperature ( T M ) of NiMnSn-based ferromagnetic shape memory alloys (FSMAs) is crucial to identifying the operating range of an application. From a materials design point of view, an efficient method that can predict the T M accurately should be strongly pursued, to meet various applications with different operating temperatures. In this paper, we demonstrate that machine learning (ML) can rapidly and accurately predict the T M in NiMnSn-based FSMAs. We evaluate the performance of four machine learning models, including Random Forest Regressor (RFR), Support Vector Regression (SVR), Linear Regression (LR), and XGBRegressor (XGBR) model. Three important features of Numa , Arc , and avg Ven are selected as the optimal feature combination for building the model. Moreover, to ensure the best generalization ability of the model, multiple methods of cross-validation (Leave-One-Out Cross-Validation, 3-fold Cross-Validation, and 5-fold Cross-Validation) are used. Finally, the XGBR model exhibits the best performance for predicting the T M ( R 2 = 0.903 and RMSE = 5.4, R 5 f 2 = 0.869 and R 3 f 2 = 0.838). The results of small deviation and variance proven that the XGBR model, proposed in this work, is suitable to be used to predict the T M of unknown NiMnSn-based FSMAs. This work is expected to promote the targeted design of FSMAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hhzz完成签到,获得积分10
1秒前
1秒前
xhemers完成签到,获得积分10
1秒前
111发布了新的文献求助10
1秒前
2秒前
爱静静应助怡然的莫茗采纳,获得10
3秒前
4秒前
科研通AI5应助清秀的以云采纳,获得30
4秒前
李健的粉丝团团长应助xx采纳,获得10
6秒前
大豪子发布了新的文献求助30
6秒前
李繁蕊发布了新的文献求助10
6秒前
10秒前
10秒前
10秒前
10秒前
橘柚完成签到 ,获得积分10
11秒前
zmmmm发布了新的文献求助10
11秒前
领导范儿应助温言采纳,获得10
11秒前
思源应助OvO采纳,获得10
13秒前
迷糊发布了新的文献求助30
14秒前
LY发布了新的文献求助10
15秒前
zzz完成签到,获得积分10
15秒前
KimJongUn完成签到,获得积分10
15秒前
17秒前
17秒前
zy完成签到,获得积分10
18秒前
开心果子发布了新的文献求助10
18秒前
云痴子完成签到,获得积分10
19秒前
SciGPT应助粥粥采纳,获得10
19秒前
19秒前
19秒前
20秒前
苏源完成签到,获得积分10
20秒前
wu关闭了wu文献求助
20秒前
20秒前
21秒前
21秒前
22秒前
22秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808