A process modularity approach for chemical process intensification and inherently safer design

模块化(生物学) 过程(计算) 更安全的 工艺设计 固有安全性 计算机科学 过程集成 机组运行 能量(信号处理) 化学过程 在制品 高效能源利用 工艺工程 可靠性工程 生化工程 工程类 数学 运营管理 电气工程 操作系统 统计 生物 遗传学 化学工程 计算机安全
作者
Arick Castillo-Landero,Jorge Aburto,Jhuma Sadhukhan,Elías Martínez-Hernández
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:168: 54-66 被引量:6
标识
DOI:10.1016/j.psep.2022.09.054
摘要

Process intensification through hybrid equipment combining unit operations has the potential for reducing energy demand and improving the safety of a chemical process. Selecting which unit operations to combine into an intensified unit is necessary in developing an intensified process that offers an inherently safer design with reduced energy demand. This paper presents a novel methodology to intensify a chemical process guided by modularity. A process network is decomposed into modules by applying a community detection algorithm to find the process units to be integrated into an intensified "module" to improve the Fire and Explosion Damage Index (FEDI). A case study for the separation of an ethanol-butanol-water mixture illustrates this approach. The results show that the safest design (lowest FEDI) is Alternative 1 which was developed using the approach and correlates with high modularity of 0.607. Energy use is reduced by 25.8% thus also leading to a more energy efficient process compared to the non-intensified design with a lower modularity (0.385). A rather empirically guided design was proposed as Alternative 2 which led to modularity of 0.533, but only 10% energy saving and no improvement in the FEDI. This demonstrates that intensification guided by modularity strengthens integration between the process units while improving both safety and energy efficiency. As such, the approach has a wide potential application to guide the intensification of chemical processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大脑袋应助ajc采纳,获得20
1秒前
Matsuteru_完成签到,获得积分20
2秒前
熙欢完成签到,获得积分20
2秒前
火星上的映安完成签到 ,获得积分10
2秒前
小罗同学完成签到,获得积分10
3秒前
3秒前
3秒前
Raymond完成签到,获得积分10
3秒前
苗条的一一完成签到,获得积分10
4秒前
gz000111完成签到,获得积分10
4秒前
mengwensi关注了科研通微信公众号
4秒前
英俊的采萱完成签到,获得积分10
4秒前
4秒前
可爱的函函应助张三采纳,获得10
4秒前
友好的牛排完成签到,获得积分10
6秒前
LIAO发布了新的文献求助10
6秒前
田様应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
小黄应助科研通管家采纳,获得10
7秒前
juana应助科研通管家采纳,获得10
7秒前
CodeCraft应助科研通管家采纳,获得10
7秒前
思源应助科研通管家采纳,获得10
7秒前
小黄应助科研通管家采纳,获得10
7秒前
搜集达人应助科研通管家采纳,获得10
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得30
8秒前
8秒前
小黄应助科研通管家采纳,获得10
8秒前
小黄应助科研通管家采纳,获得10
8秒前
饱满含玉完成签到,获得积分10
8秒前
蔻蔻完成签到,获得积分10
9秒前
sun完成签到,获得积分10
9秒前
颖儿完成签到,获得积分10
9秒前
七七爱学习完成签到,获得积分10
9秒前
草莓钙片完成签到,获得积分10
10秒前
lx完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555970
求助须知:如何正确求助?哪些是违规求助? 3131555
关于积分的说明 9391776
捐赠科研通 2831407
什么是DOI,文献DOI怎么找? 1556440
邀请新用户注册赠送积分活动 726584
科研通“疑难数据库(出版商)”最低求助积分说明 715890