A process modularity approach for chemical process intensification and inherently safer design

模块化(生物学) 过程(计算) 更安全的 工艺设计 固有安全性 计算机科学 过程集成 机组运行 能量(信号处理) 化学过程 在制品 高效能源利用 工艺工程 可靠性工程 生化工程 工程类 数学 运营管理 电气工程 操作系统 统计 生物 遗传学 化学工程 计算机安全
作者
Arick Castillo-Landero,Jorge Aburto,Jhuma Sadhukhan,Elías Martínez-Hernández
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:168: 54-66 被引量:6
标识
DOI:10.1016/j.psep.2022.09.054
摘要

Process intensification through hybrid equipment combining unit operations has the potential for reducing energy demand and improving the safety of a chemical process. Selecting which unit operations to combine into an intensified unit is necessary in developing an intensified process that offers an inherently safer design with reduced energy demand. This paper presents a novel methodology to intensify a chemical process guided by modularity. A process network is decomposed into modules by applying a community detection algorithm to find the process units to be integrated into an intensified "module" to improve the Fire and Explosion Damage Index (FEDI). A case study for the separation of an ethanol-butanol-water mixture illustrates this approach. The results show that the safest design (lowest FEDI) is Alternative 1 which was developed using the approach and correlates with high modularity of 0.607. Energy use is reduced by 25.8% thus also leading to a more energy efficient process compared to the non-intensified design with a lower modularity (0.385). A rather empirically guided design was proposed as Alternative 2 which led to modularity of 0.533, but only 10% energy saving and no improvement in the FEDI. This demonstrates that intensification guided by modularity strengthens integration between the process units while improving both safety and energy efficiency. As such, the approach has a wide potential application to guide the intensification of chemical processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
卫三发布了新的文献求助10
1秒前
HCL完成签到,获得积分10
1秒前
大个应助舒心的雪莲采纳,获得10
1秒前
1秒前
cubicT完成签到,获得积分10
1秒前
1秒前
团团团子发布了新的文献求助10
2秒前
李爱国应助叶95采纳,获得10
3秒前
3秒前
何安发布了新的文献求助10
3秒前
miao发布了新的文献求助10
3秒前
3秒前
4秒前
顾矜应助咯咯哒1采纳,获得10
4秒前
TT发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
荔枝味果冻完成签到,获得积分10
6秒前
Honahlee发布了新的文献求助10
6秒前
Criminology34应助Damon采纳,获得10
7秒前
烟花应助杨一乐采纳,获得10
7秒前
7秒前
Kuhaku发布了新的文献求助20
7秒前
凯云发布了新的文献求助10
7秒前
乐乐应助柔弱亦寒采纳,获得10
7秒前
wushuwen发布了新的文献求助10
8秒前
Orange应助SIQI采纳,获得10
8秒前
JamesPei应助包容秋珊采纳,获得10
8秒前
Akim应助望居于夜空采纳,获得10
9秒前
9秒前
万能图书馆应助walu采纳,获得10
9秒前
轻松博超完成签到,获得积分10
11秒前
Wen完成签到,获得积分10
12秒前
小炒完成签到,获得积分20
12秒前
英姑应助remake441采纳,获得10
12秒前
无聊的天空完成签到,获得积分10
12秒前
傲娇菠萝完成签到,获得积分10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608436
求助须知:如何正确求助?哪些是违规求助? 4693073
关于积分的说明 14876620
捐赠科研通 4717595
什么是DOI,文献DOI怎么找? 2544222
邀请新用户注册赠送积分活动 1509305
关于科研通互助平台的介绍 1472836