A process modularity approach for chemical process intensification and inherently safer design

模块化(生物学) 过程(计算) 更安全的 工艺设计 固有安全性 计算机科学 过程集成 机组运行 能量(信号处理) 化学过程 在制品 高效能源利用 工艺工程 可靠性工程 生化工程 工程类 数学 运营管理 电气工程 操作系统 统计 生物 遗传学 化学工程 计算机安全
作者
Arick Castillo-Landero,Jorge Aburto,Jhuma Sadhukhan,Elías Martínez-Hernández
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:168: 54-66 被引量:6
标识
DOI:10.1016/j.psep.2022.09.054
摘要

Process intensification through hybrid equipment combining unit operations has the potential for reducing energy demand and improving the safety of a chemical process. Selecting which unit operations to combine into an intensified unit is necessary in developing an intensified process that offers an inherently safer design with reduced energy demand. This paper presents a novel methodology to intensify a chemical process guided by modularity. A process network is decomposed into modules by applying a community detection algorithm to find the process units to be integrated into an intensified "module" to improve the Fire and Explosion Damage Index (FEDI). A case study for the separation of an ethanol-butanol-water mixture illustrates this approach. The results show that the safest design (lowest FEDI) is Alternative 1 which was developed using the approach and correlates with high modularity of 0.607. Energy use is reduced by 25.8% thus also leading to a more energy efficient process compared to the non-intensified design with a lower modularity (0.385). A rather empirically guided design was proposed as Alternative 2 which led to modularity of 0.533, but only 10% energy saving and no improvement in the FEDI. This demonstrates that intensification guided by modularity strengthens integration between the process units while improving both safety and energy efficiency. As such, the approach has a wide potential application to guide the intensification of chemical processes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
renjian完成签到,获得积分10
刚刚
回复对方完成签到,获得积分10
1秒前
邓佳鑫Alan应助科研小白菜采纳,获得10
2秒前
举人烧烤发布了新的文献求助10
2秒前
3秒前
4秒前
千凡发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
李健的小迷弟应助郭郭郭采纳,获得10
7秒前
7秒前
7秒前
52251013106发布了新的文献求助10
8秒前
8秒前
科研通AI6应助fangzhang采纳,获得10
9秒前
王冠军发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
屈勇旭完成签到,获得积分10
11秒前
11秒前
鸡蛋酱完成签到 ,获得积分10
11秒前
12秒前
12秒前
TingtingGZ发布了新的文献求助10
13秒前
zp发布了新的文献求助10
13秒前
燕子发布了新的文献求助10
13秒前
CUN完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
15秒前
16秒前
俟风落秋叶完成签到,获得积分10
17秒前
vivre223发布了新的文献求助10
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756