Hierarchically porous composite fabrics with ultrahigh metal–organic framework loading for zero-energy-consumption heat dissipation

材料科学 复合数 复合材料
作者
Xiangyu Liu,Pengli Li,Jie Chen,Pingkai Jiang,Yiu‐Wing Mai,Xingyi Huang
出处
期刊:Science Bulletin [Elsevier]
卷期号:67 (19): 1991-2000 被引量:34
标识
DOI:10.1016/j.scib.2022.09.014
摘要

The long-term safe operation of high-power equipment and integrated electronic devices requires efficient thermal management, which in turn increases the energy consumption further. Hence, the sustainable development of our society needs advanced thermal management with low, even zero, energy consumption. Harvesting water from the atmosphere, followed by moisture desorption to dissipate heat, is an efficient and feasible approach for zero-energy-consumption thermal management. However, current methods are limited by the low absorbance of water, low water vapor transmission rate (WVTR) and low stability, thus resulting in low thermal management capability. In this study, we report an innovative electrospinning method to process hierarchically porous metal-organic framework (MOF) composite fabrics with high-efficiency and zero-energy-consumption thermal management. The composite fabrics are highly loaded with MOF (75 wt%) and their WVTR value can be up to 3138 g m-2 d-1. The composite fabrics also exhibit stable microstructure and performance. Under a conventional environment (30 ℃, 60% relative humidity), the composite fabrics adsorb water vapor for regeneration within 1.5 h to a saturated value Wsat of 0.614 g g-1, and a corresponding equivalent enthalpy of 1705.6 J g-1. In the thermal management tests, the composite fabrics show a strong cooling capability and significantly improve the performance of thermoelectric devices, portable storage devices and wireless chargers. These results suggest that hierarchically porous MOF composite fabrics are highly promising for thermal management of intermittent-operation electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuli完成签到 ,获得积分10
刚刚
wanci应助呃呃采纳,获得10
刚刚
1秒前
1秒前
1秒前
善学以致用应助LL采纳,获得10
1秒前
CCC发布了新的文献求助10
1秒前
1秒前
宝宝完成签到,获得积分20
1秒前
铁岭砍王发布了新的文献求助10
1秒前
yangmin完成签到,获得积分10
2秒前
2秒前
苗条平萱完成签到,获得积分10
3秒前
王多肉发布了新的文献求助10
3秒前
平淡寻菡完成签到,获得积分10
4秒前
4秒前
zjw发布了新的文献求助20
4秒前
糖串串完成签到,获得积分10
4秒前
5秒前
smm发布了新的文献求助10
5秒前
lsw发布了新的文献求助10
5秒前
Mira完成签到,获得积分10
6秒前
6秒前
6秒前
bkagyin应助王心桐采纳,获得10
6秒前
领导范儿应助why采纳,获得10
7秒前
7秒前
Hello应助yr888采纳,获得10
7秒前
SciGPT应助小菜狗采纳,获得10
8秒前
linya发布了新的文献求助10
8秒前
8秒前
IMP完成签到 ,获得积分10
8秒前
loststarts完成签到 ,获得积分10
8秒前
zly完成签到,获得积分10
9秒前
9秒前
两句话发布了新的文献求助210
9秒前
寒冷板栗完成签到,获得积分10
10秒前
lsw完成签到,获得积分10
10秒前
yilin完成签到 ,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5609888
求助须知:如何正确求助?哪些是违规求助? 4694483
关于积分的说明 14882481
捐赠科研通 4720586
什么是DOI,文献DOI怎么找? 2544960
邀请新用户注册赠送积分活动 1509797
关于科研通互助平台的介绍 1473002