A novel multi-objective optimization model for the vehicle routing problem with drone delivery and dynamic flight endurance

无人机 车辆路径问题 工程类 计算机科学 布线(电子设计自动化) 航空学 模拟 运筹学 汽车工程 嵌入式系统 遗传学 生物
作者
Shuai Zhang,Siliang Liu,Weibo Xu,Wanru Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:173: 108679-108679 被引量:31
标识
DOI:10.1016/j.cie.2022.108679
摘要

• A novel optimization model for the vehicle routing problem with drone delivery is proposed. • Economic and environmental objectives are optimized simultaneously in the model. • The flight endurance of drones is modelled dynamically with their loading rate. • An extended non-dominated sorting genetic algorithm is presented to solve the model. With growing environmental concerns and tough carbon–neutral objectives, logistics providers have to consider not only economic benefits but also environmental impact in the delivery process. This study proposes a novel multi-objective optimization model for the vehicle routing problem with drone delivery. The proposed model involves improving delivery efficiency and reducing environmental impact by extending the conventional ground vehicle (i.e. truck) delivery model with the implementation of drone delivery as well as the optimization of the total energy consumption of trucks. Drones need to collaborate with trucks to serve customers because of their limited flight endurance. Moreover, the fact that flight endurance is dynamic and influenced by the loading rate of drones is also considered to satisfy practical application scenarios. An extended non-dominated sorting genetic algorithm is presented to solve the proposed model. A new encoding and decoding method is incorporated to represent multiple feasible routes of drones and trucks, several crossover and mutation operators are integrated to accelerate the algorithmic convergence, and a multi-dimensional local search strategy is employed to enhance the diversity of population. Finally, the experimental results demonstrate that the presented algorithm is effective in obtaining high-quality non-dominated solutions by comparing it with three other baseline multi-objective algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mojito完成签到 ,获得积分10
刚刚
PWG完成签到,获得积分10
刚刚
忘的澜完成签到,获得积分10
1秒前
后来发布了新的文献求助30
1秒前
夏雨微凉完成签到,获得积分10
1秒前
雨田完成签到,获得积分0
2秒前
lq67gg完成签到 ,获得积分10
2秒前
Photon完成签到,获得积分10
2秒前
兴奋中道完成签到,获得积分10
3秒前
彭于彦祖应助lll采纳,获得30
3秒前
雨中漫步完成签到,获得积分10
3秒前
妙bu可yan完成签到,获得积分10
3秒前
大个应助MG_aichy采纳,获得10
3秒前
idemipere发布了新的文献求助10
4秒前
5秒前
研友_VZG7GZ应助宇与鱼采纳,获得10
5秒前
沐酒完成签到,获得积分10
6秒前
6秒前
科研小白白完成签到 ,获得积分10
7秒前
7秒前
李爱国应助敏感静采纳,获得10
8秒前
路哈哈发布了新的文献求助10
8秒前
8秒前
9秒前
鲤鱼鸽子应助不理李采纳,获得10
9秒前
9秒前
9秒前
jackbauer完成签到,获得积分10
10秒前
王wangWANG完成签到,获得积分10
10秒前
11秒前
Owen应助希音采纳,获得10
11秒前
闵凝竹完成签到 ,获得积分10
11秒前
9xixixixixixixi完成签到,获得积分10
11秒前
斯文败类应助journey_qq采纳,获得10
11秒前
太师完成签到,获得积分10
12秒前
Hana给Hana的求助进行了留言
12秒前
感动的曼容完成签到,获得积分10
13秒前
idemipere完成签到,获得积分10
14秒前
NagatoYuki完成签到,获得积分10
14秒前
tmr完成签到,获得积分10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303510
求助须知:如何正确求助?哪些是违规求助? 2937845
关于积分的说明 8484517
捐赠科研通 2611793
什么是DOI,文献DOI怎么找? 1426293
科研通“疑难数据库(出版商)”最低求助积分说明 662553
邀请新用户注册赠送积分活动 647076