A novel multi-objective optimization model for the vehicle routing problem with drone delivery and dynamic flight endurance

无人机 车辆路径问题 工程类 计算机科学 布线(电子设计自动化) 航空学 模拟 运筹学 汽车工程 嵌入式系统 遗传学 生物
作者
Shuai Zhang,Siliang Liu,Weibo Xu,Wanru Wang
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:173: 108679-108679 被引量:37
标识
DOI:10.1016/j.cie.2022.108679
摘要

• A novel optimization model for the vehicle routing problem with drone delivery is proposed. • Economic and environmental objectives are optimized simultaneously in the model. • The flight endurance of drones is modelled dynamically with their loading rate. • An extended non-dominated sorting genetic algorithm is presented to solve the model. With growing environmental concerns and tough carbon–neutral objectives, logistics providers have to consider not only economic benefits but also environmental impact in the delivery process. This study proposes a novel multi-objective optimization model for the vehicle routing problem with drone delivery. The proposed model involves improving delivery efficiency and reducing environmental impact by extending the conventional ground vehicle (i.e. truck) delivery model with the implementation of drone delivery as well as the optimization of the total energy consumption of trucks. Drones need to collaborate with trucks to serve customers because of their limited flight endurance. Moreover, the fact that flight endurance is dynamic and influenced by the loading rate of drones is also considered to satisfy practical application scenarios. An extended non-dominated sorting genetic algorithm is presented to solve the proposed model. A new encoding and decoding method is incorporated to represent multiple feasible routes of drones and trucks, several crossover and mutation operators are integrated to accelerate the algorithmic convergence, and a multi-dimensional local search strategy is employed to enhance the diversity of population. Finally, the experimental results demonstrate that the presented algorithm is effective in obtaining high-quality non-dominated solutions by comparing it with three other baseline multi-objective algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蝌蚪发布了新的文献求助10
刚刚
FashionBoy应助鱼啵啵采纳,获得10
1秒前
vicky发布了新的文献求助10
2秒前
3秒前
6秒前
cmr发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
千帆完成签到 ,获得积分10
6秒前
7秒前
在水一方应助科研爱好者采纳,获得10
7秒前
完美大神完成签到 ,获得积分10
8秒前
10秒前
无心的钢铁侠完成签到,获得积分10
10秒前
Manzhen发布了新的文献求助10
11秒前
充电宝应助大都督采纳,获得30
12秒前
猪猪hero应助重要小懒虫采纳,获得10
13秒前
14秒前
16秒前
wenge发布了新的文献求助10
16秒前
JamesPei应助韩哈哈采纳,获得10
16秒前
shooin完成签到,获得积分10
16秒前
guoyan完成签到,获得积分10
17秒前
17秒前
浪客完成签到 ,获得积分10
19秒前
小富婆完成签到,获得积分10
19秒前
21秒前
22秒前
23秒前
达助发布了新的文献求助10
23秒前
脑洞疼应助无心的钢铁侠采纳,获得10
23秒前
农大长工完成签到,获得积分10
25秒前
25秒前
蝌蚪完成签到,获得积分10
25秒前
搜集达人应助明亮的雁玉采纳,获得10
26秒前
丁丁慧完成签到,获得积分10
26秒前
27秒前
李健应助Manzhen采纳,获得20
27秒前
28秒前
赘婿应助wa采纳,获得10
28秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979611
求助须知:如何正确求助?哪些是违规求助? 3523559
关于积分的说明 11218024
捐赠科研通 3261063
什么是DOI,文献DOI怎么找? 1800385
邀请新用户注册赠送积分活动 879079
科研通“疑难数据库(出版商)”最低求助积分说明 807160