A novel multi-objective optimization model for the vehicle routing problem with drone delivery and dynamic flight endurance

无人机 车辆路径问题 工程类 计算机科学 布线(电子设计自动化) 航空学 模拟 运筹学 汽车工程 嵌入式系统 遗传学 生物
作者
Shuai Zhang,Siliang Liu,Weibo Xu,Wanru Wang
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:173: 108679-108679 被引量:56
标识
DOI:10.1016/j.cie.2022.108679
摘要

• A novel optimization model for the vehicle routing problem with drone delivery is proposed. • Economic and environmental objectives are optimized simultaneously in the model. • The flight endurance of drones is modelled dynamically with their loading rate. • An extended non-dominated sorting genetic algorithm is presented to solve the model. With growing environmental concerns and tough carbon–neutral objectives, logistics providers have to consider not only economic benefits but also environmental impact in the delivery process. This study proposes a novel multi-objective optimization model for the vehicle routing problem with drone delivery. The proposed model involves improving delivery efficiency and reducing environmental impact by extending the conventional ground vehicle (i.e. truck) delivery model with the implementation of drone delivery as well as the optimization of the total energy consumption of trucks. Drones need to collaborate with trucks to serve customers because of their limited flight endurance. Moreover, the fact that flight endurance is dynamic and influenced by the loading rate of drones is also considered to satisfy practical application scenarios. An extended non-dominated sorting genetic algorithm is presented to solve the proposed model. A new encoding and decoding method is incorporated to represent multiple feasible routes of drones and trucks, several crossover and mutation operators are integrated to accelerate the algorithmic convergence, and a multi-dimensional local search strategy is employed to enhance the diversity of population. Finally, the experimental results demonstrate that the presented algorithm is effective in obtaining high-quality non-dominated solutions by comparing it with three other baseline multi-objective algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Kyone完成签到,获得积分10
1秒前
1秒前
z123完成签到,获得积分10
1秒前
dairenfe发布了新的文献求助20
1秒前
1秒前
大模型应助yyy采纳,获得10
2秒前
2秒前
2秒前
一颗松应助零零零零采纳,获得10
4秒前
iNk应助零零零零采纳,获得20
4秒前
椰丝yes发布了新的文献求助10
5秒前
6秒前
z掌握一下完成签到,获得积分10
6秒前
likke发布了新的文献求助10
7秒前
阳光怀亦完成签到,获得积分10
7秒前
迷路小丸子完成签到,获得积分10
7秒前
peng发布了新的文献求助10
8秒前
小马甲应助YR采纳,获得10
8秒前
z掌握一下发布了新的文献求助10
9秒前
失眠柚子完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
岩下松风完成签到,获得积分10
11秒前
12秒前
时光不旧只是满尘灰完成签到 ,获得积分10
13秒前
Hello应助peng采纳,获得10
14秒前
14秒前
椰丝yes完成签到,获得积分10
14秒前
鱼囧发布了新的文献求助10
14秒前
哆啦十七应助value采纳,获得10
14秒前
15秒前
风181013发布了新的文献求助10
16秒前
热心语山发布了新的文献求助10
19秒前
学术小白发布了新的文献求助30
19秒前
没有答案发布了新的文献求助10
20秒前
21秒前
隐形曼青应助玲也采纳,获得10
21秒前
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342724
求助须知:如何正确求助?哪些是违规求助? 4478521
关于积分的说明 13939809
捐赠科研通 4375215
什么是DOI,文献DOI怎么找? 2404022
邀请新用户注册赠送积分活动 1396569
关于科研通互助平台的介绍 1368794