Transformer-based protein generation with regularized latent space optimization

自编码 计算机科学 适应度函数 人工智能 健身景观 序列空间 变压器 蛋白质测序 序列(生物学) 机器学习 深度学习 遗传算法 数学 生物 肽序列 遗传学 基因 物理 巴拿赫空间 社会学 人口学 量子力学 电压 纯数学 人口
作者
Egbert Castro,Abhinav Godavarthi,Julian Rubinfien,Kevin B. Givechian,Dhananjay Bhaskar,Smita Krishnaswamy
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (10): 840-851 被引量:42
标识
DOI:10.1038/s42256-022-00532-1
摘要

The development of powerful natural language models has improved the ability to learn meaningful representations of protein sequences. In addition, advances in high-throughput mutagenesis, directed evolution and next-generation sequencing have allowed for the accumulation of large amounts of labelled fitness data. Leveraging these two trends, we introduce Regularized Latent Space Optimization (ReLSO), a deep transformer-based autoencoder, which features a highly structured latent space that is trained to jointly generate sequences as well as predict fitness. Through regularized prediction heads, ReLSO introduces a powerful protein sequence encoder and a novel approach for efficient fitness landscape traversal. Using ReLSO, we explicitly model the sequence–function landscape of large labelled datasets and generate new molecules by optimizing within the latent space using gradient-based methods. We evaluate this approach on several publicly available protein datasets, including variant sets of anti-ranibizumab and green fluorescent protein. We observe a greater sequence optimization efficiency (increase in fitness per optimization step) using ReLSO compared with other approaches, where ReLSO more robustly generates high-fitness sequences. Furthermore, the attention-based relationships learned by the jointly trained ReLSO models provide a potential avenue towards sequence-level fitness attribution information. The space of possible proteins is vast, and optimizing proteins for specific target properties computationally is an ongoing challenge, even with large amounts of data. Castro and colleagues combine a transformer-based model with regularized prediction heads to form a smooth and pseudoconvex latent space that allows for easier navigation and more efficient optimization of proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
勤恳易谙完成签到,获得积分10
2秒前
4秒前
啦啦啦发布了新的文献求助10
5秒前
玖玖完成签到,获得积分10
5秒前
haipronl发布了新的文献求助10
5秒前
qq完成签到 ,获得积分10
6秒前
orixero应助晚棠采纳,获得10
7秒前
深情安青应助9952采纳,获得10
7秒前
充电宝应助boom采纳,获得10
7秒前
12秒前
14秒前
15秒前
冬菊完成签到 ,获得积分10
17秒前
18秒前
典雅碧空发布了新的文献求助30
18秒前
欣欣紫完成签到,获得积分10
23秒前
23秒前
bingo0913完成签到,获得积分10
24秒前
sensen完成签到,获得积分10
25秒前
量子星尘发布了新的文献求助50
26秒前
亲爱的融完成签到,获得积分10
26秒前
28秒前
bbb发布了新的文献求助10
28秒前
29秒前
希望天下0贩的0应助sensen采纳,获得10
29秒前
典雅的苗条发布了新的文献求助100
30秒前
Dada完成签到,获得积分10
31秒前
yookia应助畅快访蕊采纳,获得10
31秒前
Akim应助yanghh采纳,获得10
32秒前
专注巨人发布了新的文献求助10
33秒前
33秒前
调皮正豪发布了新的文献求助50
34秒前
38秒前
摇一摇完成签到,获得积分10
39秒前
39秒前
keen完成签到 ,获得积分10
40秒前
DRYAN完成签到,获得积分10
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954416
求助须知:如何正确求助?哪些是违规求助? 3500394
关于积分的说明 11099388
捐赠科研通 3230962
什么是DOI,文献DOI怎么找? 1786171
邀请新用户注册赠送积分活动 869852
科研通“疑难数据库(出版商)”最低求助积分说明 801689