亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The genetic algorithm-aided three-stage ensemble learning method identified a robust survival risk score in patients with glioma

集成学习 接收机工作特性 稳健性(进化) 人工智能 计算机科学 机器学习 生存分析 比例危险模型 遗传算法 试验装置 交叉验证 算法 统计 数学 生物 基因 生物化学
作者
Sujie Zhu,Jie Zhu,Jie Zhu,Liting Huang,Shixin Wang,Suzhen Bi,Zhengwei Xie
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:2
标识
DOI:10.1093/bib/bbac344
摘要

Ensemble learning is a kind of machine learning method which can integrate multiple basic learners together and achieve higher accuracy. Recently, single machine learning methods have been established to predict survival for patients with cancer. However, it still lacked a robust ensemble learning model with high accuracy to pick out patients with high risks. To achieve this, we proposed a novel genetic algorithm-aided three-stage ensemble learning method (3S score) for survival prediction. During the process of constructing the 3S score, double training sets were used to avoid over-fitting; the gene-pairing method was applied to reduce batch effect; a genetic algorithm was employed to select the best basic learner combination. When used to predict the survival state of glioma patients, this model achieved the highest C-index (0.697) as well as area under the receiver operating characteristic curve (ROC-AUCs) (first year = 0.705, third year = 0.825 and fifth year = 0.839) in the combined test set (n = 1191), compared with 12 other baseline models. Furthermore, the 3S score can distinguish survival significantly in eight cohorts among the total of nine independent test cohorts (P < 0.05), achieving significant improvement of ROC-AUCs. Notably, ablation experiments demonstrated that the gene-pairing method, double training sets and genetic algorithm make sure the robustness and effectiveness of the 3S score. The performance exploration on pan-cancer showed that the 3S score has excellent ability on survival prediction in five kinds of cancers, which was verified by Cox regression, survival curves and ROC curves together. To enable its clinical adoption, we implemented the 3S score and other two clinical factors as an easy-to-use web tool for risk scoring and therapy stratification in glioma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kejiwangzi发布了新的文献求助20
15秒前
似水流年完成签到 ,获得积分10
33秒前
万能图书馆应助绝尘采纳,获得10
55秒前
2分钟前
瑞葛发布了新的文献求助10
2分钟前
2分钟前
wanci应助科研通管家采纳,获得10
2分钟前
Candy完成签到 ,获得积分10
2分钟前
绝尘发布了新的文献求助10
3分钟前
李健的小迷弟应助瑞葛采纳,获得10
3分钟前
xjcy应助研友_LwM9JZ采纳,获得10
4分钟前
4分钟前
绝尘发布了新的文献求助10
4分钟前
科研通AI2S应助kxx采纳,获得10
5分钟前
kejiwangzi发布了新的文献求助20
5分钟前
yjw应助大胆的傲丝采纳,获得20
5分钟前
gszy1975完成签到,获得积分10
5分钟前
大模型应助瑞葛采纳,获得10
6分钟前
习月阳完成签到,获得积分10
7分钟前
王晓静完成签到 ,获得积分10
7分钟前
10分钟前
章铭-111完成签到 ,获得积分10
11分钟前
11分钟前
瑞葛发布了新的文献求助10
11分钟前
12分钟前
咸金城发布了新的文献求助10
12分钟前
12分钟前
瑞葛发布了新的文献求助10
12分钟前
鱼辞发布了新的文献求助10
12分钟前
樱桃猴子完成签到,获得积分10
12分钟前
英俊的铭应助科研通管家采纳,获得30
12分钟前
酷波er应助鱼辞采纳,获得10
12分钟前
绝尘发布了新的文献求助10
12分钟前
领导范儿应助绝尘采纳,获得10
13分钟前
yjw应助瑞葛采纳,获得10
13分钟前
13分钟前
13分钟前
鱼辞发布了新的文献求助10
13分钟前
我是老大应助鱼辞采纳,获得10
13分钟前
咸金城发布了新的文献求助10
13分钟前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3213132
求助须知:如何正确求助?哪些是违规求助? 2861929
关于积分的说明 8131217
捐赠科研通 2527897
什么是DOI,文献DOI怎么找? 1361934
科研通“疑难数据库(出版商)”最低求助积分说明 643546
邀请新用户注册赠送积分活动 615885