The genetic algorithm-aided three-stage ensemble learning method identified a robust survival risk score in patients with glioma

集成学习 接收机工作特性 稳健性(进化) 人工智能 计算机科学 机器学习 生存分析 比例危险模型 试验装置 算法 统计 数学 生物 基因 生物化学
作者
Sujie Zhu,Weikaixin Kong,Jie Zhu,Liting Huang,Shixin Wang,Suzhen Bi,Zhengwei Xie
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac344
摘要

Ensemble learning is a kind of machine learning method which can integrate multiple basic learners together and achieve higher accuracy. Recently, single machine learning methods have been established to predict survival for patients with cancer. However, it still lacked a robust ensemble learning model with high accuracy to pick out patients with high risks. To achieve this, we proposed a novel genetic algorithm-aided three-stage ensemble learning method (3S score) for survival prediction. During the process of constructing the 3S score, double training sets were used to avoid over-fitting; the gene-pairing method was applied to reduce batch effect; a genetic algorithm was employed to select the best basic learner combination. When used to predict the survival state of glioma patients, this model achieved the highest C-index (0.697) as well as area under the receiver operating characteristic curve (ROC-AUCs) (first year = 0.705, third year = 0.825 and fifth year = 0.839) in the combined test set (n = 1191), compared with 12 other baseline models. Furthermore, the 3S score can distinguish survival significantly in eight cohorts among the total of nine independent test cohorts (P < 0.05), achieving significant improvement of ROC-AUCs. Notably, ablation experiments demonstrated that the gene-pairing method, double training sets and genetic algorithm make sure the robustness and effectiveness of the 3S score. The performance exploration on pan-cancer showed that the 3S score has excellent ability on survival prediction in five kinds of cancers, which was verified by Cox regression, survival curves and ROC curves together. To enable its clinical adoption, we implemented the 3S score and other two clinical factors as an easy-to-use web tool for risk scoring and therapy stratification in glioma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳的菠萝完成签到,获得积分10
1秒前
jy发布了新的文献求助10
1秒前
2秒前
2秒前
mfstone发布了新的文献求助10
2秒前
LiLi完成签到,获得积分10
3秒前
仁爱的老四完成签到 ,获得积分10
4秒前
李健的小迷弟应助学术z采纳,获得10
4秒前
科研通AI5应助归海紫翠采纳,获得30
5秒前
热情的初兰完成签到 ,获得积分10
6秒前
顺顺完成签到,获得积分10
6秒前
莫妮卡卡完成签到,获得积分10
6秒前
nbing完成签到,获得积分10
7秒前
SCI发布了新的文献求助50
7秒前
小猫多鱼完成签到,获得积分10
8秒前
8秒前
8秒前
默默尔烟发布了新的文献求助10
8秒前
8秒前
8秒前
宁静致远完成签到,获得积分10
8秒前
天天快乐应助内向秋寒采纳,获得10
11秒前
sfafasfsdf完成签到,获得积分10
11秒前
11秒前
luuuuuu发布了新的文献求助10
12秒前
lai发布了新的文献求助30
12秒前
12秒前
zrk发布了新的文献求助10
12秒前
12秒前
13秒前
ZJJ完成签到,获得积分10
13秒前
花开的声音1217完成签到,获得积分10
14秒前
古药完成签到,获得积分10
15秒前
赘婿应助烟雨行舟采纳,获得10
15秒前
seal发布了新的文献求助10
16秒前
16秒前
17秒前
不吃香菜发布了新的文献求助10
17秒前
RC_Wang应助ZJJ采纳,获得10
17秒前
Chridy发布了新的文献求助10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794