The genetic algorithm-aided three-stage ensemble learning method identified a robust survival risk score in patients with glioma

集成学习 接收机工作特性 稳健性(进化) 人工智能 计算机科学 机器学习 生存分析 比例危险模型 试验装置 算法 统计 数学 生物 基因 生物化学
作者
Sujie Zhu,Weikaixin Kong,Jie Zhu,Liting Huang,Shixin Wang,Suzhen Bi,Zhengwei Xie
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (5) 被引量:8
标识
DOI:10.1093/bib/bbac344
摘要

Ensemble learning is a kind of machine learning method which can integrate multiple basic learners together and achieve higher accuracy. Recently, single machine learning methods have been established to predict survival for patients with cancer. However, it still lacked a robust ensemble learning model with high accuracy to pick out patients with high risks. To achieve this, we proposed a novel genetic algorithm-aided three-stage ensemble learning method (3S score) for survival prediction. During the process of constructing the 3S score, double training sets were used to avoid over-fitting; the gene-pairing method was applied to reduce batch effect; a genetic algorithm was employed to select the best basic learner combination. When used to predict the survival state of glioma patients, this model achieved the highest C-index (0.697) as well as area under the receiver operating characteristic curve (ROC-AUCs) (first year = 0.705, third year = 0.825 and fifth year = 0.839) in the combined test set (n = 1191), compared with 12 other baseline models. Furthermore, the 3S score can distinguish survival significantly in eight cohorts among the total of nine independent test cohorts (P < 0.05), achieving significant improvement of ROC-AUCs. Notably, ablation experiments demonstrated that the gene-pairing method, double training sets and genetic algorithm make sure the robustness and effectiveness of the 3S score. The performance exploration on pan-cancer showed that the 3S score has excellent ability on survival prediction in five kinds of cancers, which was verified by Cox regression, survival curves and ROC curves together. To enable its clinical adoption, we implemented the 3S score and other two clinical factors as an easy-to-use web tool for risk scoring and therapy stratification in glioma patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ll发布了新的文献求助10
2秒前
英吉利25发布了新的文献求助10
3秒前
望志青年完成签到,获得积分10
4秒前
4秒前
lalala发布了新的文献求助10
6秒前
6秒前
见雨鱼完成签到,获得积分10
9秒前
greenlu完成签到,获得积分10
9秒前
10秒前
10秒前
ding应助林八八采纳,获得10
10秒前
11秒前
13秒前
科研通AI5应助图图采纳,获得10
13秒前
control完成签到,获得积分10
15秒前
15秒前
lalala发布了新的文献求助10
16秒前
科目三应助北陆小猫采纳,获得10
16秒前
16秒前
繁荣的菲音完成签到,获得积分10
17秒前
yuan发布了新的文献求助10
17秒前
19秒前
20秒前
辣子鸡发布了新的文献求助10
20秒前
金文龙完成签到,获得积分10
20秒前
yehaidadao发布了新的文献求助10
21秒前
英吉利25发布了新的文献求助10
23秒前
23秒前
翟翟完成签到,获得积分10
23秒前
24秒前
24秒前
25秒前
微末发布了新的文献求助10
25秒前
25秒前
粥粥应助科研通管家采纳,获得10
25秒前
隐形曼青应助科研通管家采纳,获得10
25秒前
yar应助科研通管家采纳,获得10
25秒前
1351567822应助科研通管家采纳,获得10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998724
求助须知:如何正确求助?哪些是违规求助? 3538169
关于积分的说明 11273611
捐赠科研通 3277151
什么是DOI,文献DOI怎么找? 1807423
邀请新用户注册赠送积分活动 883867
科研通“疑难数据库(出版商)”最低求助积分说明 810070