劈形算符
欧米茄
领域(数学分析)
有界函数
组合数学
物理
边界(拓扑)
Neumann边界条件
数学分析
数学
量子力学
作者
Jiashan Zheng,Yuanyuan Ke
出处
期刊:Communications on Pure and Applied Analysis
[American Institute of Mathematical Sciences]
日期:2023-01-01
卷期号:22 (1): 100-126
摘要
We consider the following fully parabolic Keller–Segel system with logistic source$ \left\{\begin{array}{ll} u_t = d_1\Delta u-\nabla\cdot(u\nabla v)+\nabla\cdot(u\nabla w)+u(a-b u^{m -1}), \\ {v_t = d_2\Delta v+\nabla\cdot(v\nabla w)- \mu v+\kappa u }, \quad\\ {w_t = d_3\Delta w+ru- \delta w}, \quad\ \end{array}\right. $over a bounded domain $ \Omega\subset\mathbb{R}^N(N\geq1) $, with smooth boundary $ \partial\Omega $, the parameters $ a\in \mathbb{R}, b, d_1, d_2, d_3, \mu, \kappa, r, \delta $ are all positive parameters. We proved that if $ m>1+\frac{N}{2} $, the corresponding Neumann initial-boundary value problem admits a unique global bounded classical nonnegative solution. One can also see that the blow up phenomenon can be prevented by the logistic source. To the best of our knowledge, there are the first results about the boundedness of solutions for the system with higher dimensional ($ N\geq3 $).
科研通智能强力驱动
Strongly Powered by AbleSci AI