A split–merge clustering algorithm based on the k-nearest neighbor graph

聚类分析 合并(版本控制) 计算机科学 最近邻链算法 图形 离群值 k-最近邻算法 单连锁聚类 模式识别(心理学) 算法 完整的链接聚类 数据点 相关聚类 数据挖掘 CURE数据聚类算法 人工智能 树冠聚类算法 理论计算机科学 情报检索
作者
Yan Wang,Yan Ma,Hui Huang,Bin Wang,D. P. Acharjya
出处
期刊:Information Systems [Elsevier]
卷期号:111: 102124-102124 被引量:6
标识
DOI:10.1016/j.is.2022.102124
摘要

Numerous graph-based clustering algorithms relying on k-nearest neighbor (KNN) have been proposed. However, the performance of these algorithms tends to be affected by many factors such as cluster shape, cluster density and outliers. To address these issues, we present a split–merge clustering algorithm based on the KNN graph (SMKNN), which is based on the idea that two adjacent clusters can be merged if the data points located in the connection layers of the two clusters tend to be consistent in distribution. In Stage 1, a KNN graph is constructed. In Stage 2, the subgraphs are obtained by removing the pivot points from the KNN graph, in which the pivot points are determined by the size of local distance ratio of data points. In Stage 3, the adjacent cluster pairs satisfying the maximum similarity are merged, in which the similarity measure of two clusters is designed with two concepts including external connection edges and internal connection edges. By the experiments on ten synthetic data sets and eight real data sets, we compared SMKNN with two traditional algorithms, two density-based algorithms, nine graph-based algorithms and four neural network based algorithms in accuracy. The experimental results demonstrate a good performance of the proposed clustering method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只小学弱完成签到,获得积分10
1秒前
董帅完成签到,获得积分10
1秒前
风清扬发布了新的文献求助10
1秒前
kk完成签到 ,获得积分10
3秒前
未碎冰蓝完成签到,获得积分20
4秒前
万能图书馆应助Zhusy采纳,获得30
5秒前
5秒前
lili完成签到,获得积分10
5秒前
鸡鱼蚝发布了新的文献求助10
5秒前
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
tranphucthinh发布了新的文献求助10
10秒前
10秒前
科研通AI6应助鸡鱼蚝采纳,获得10
12秒前
14秒前
赘婿应助One采纳,获得10
14秒前
赘婿应助DamienC采纳,获得10
14秒前
tranphucthinh完成签到,获得积分10
15秒前
treetree的应助YY再摆烂采纳,获得10
16秒前
orixero应助doctorc采纳,获得30
16秒前
杠赛来完成签到,获得积分10
17秒前
无语的大雁完成签到 ,获得积分10
18秒前
20秒前
21秒前
lllate完成签到 ,获得积分10
21秒前
22秒前
23秒前
YY再摆烂完成签到,获得积分10
23秒前
25秒前
林非鹿发布了新的文献求助10
27秒前
27秒前
28秒前
zhukeqinag发布了新的文献求助10
28秒前
欣欣子完成签到 ,获得积分10
29秒前
29秒前
30秒前
31秒前
33发布了新的文献求助10
32秒前
刘钊扬完成签到,获得积分10
33秒前
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565699
求助须知:如何正确求助?哪些是违规求助? 4650686
关于积分的说明 14692512
捐赠科研通 4592693
什么是DOI,文献DOI怎么找? 2519716
邀请新用户注册赠送积分活动 1492102
关于科研通互助平台的介绍 1463316