尖晶石
扩展X射线吸收精细结构
析氧
晶体结构
电化学
八面体
电催化剂
结晶学
无机化学
氧化还原
氧烷
阳离子聚合
材料科学
化学
吸收光谱法
物理化学
电极
冶金
物理
量子力学
光谱学
高分子化学
作者
Imtiaz Ahmed,Rathindranath Biswas,Saptarshi Ghosh Dastider,Harjinder Singh,Shouvik Mete,Ranjit A. Patil,Monochura Saha,Ashok K. Yadav,Sambhu Nath Jha,Krishnakanta Mondal,Harishchandra Singh,Yuan‐Ron Ma,Krishna Kanta Haldar
出处
期刊:Energy & Fuels
[American Chemical Society]
日期:2022-09-14
卷期号:36 (19): 12160-12169
被引量:21
标识
DOI:10.1021/acs.energyfuels.2c02447
摘要
Spinel-type LiMn1.5Ni0.5O4 has been paid temendrous consideration as an electrode material because of its low cost, high voltage, and stabilized electrochemical performance. Here, we demonstrate the mechanism of iron (Fe) integration into LiMn1.5Ni0.5O4 via solution methods followed by calcination at a high temparature, as an efficient electrocatalyst for water splitting. Various microscopic and structural characterizations of the crystal structure affirmed the integration of Fe into the LiMn1.5Ni0.5O4 lattice and the constitution of the cubic LiMn1.38Fe0.12Ni0.5O4 crystal. Local structure analysis around Fe by extended X-ray absorption fine structure (EXAFS) showed Fe3+ ions in a six-coordinated octahedral environment, demonstrating incorporation of Fe as a substitute at the Mn site in the LiMn1.5Ni0.5O4 host. EXAFS also confirmed that the perfectly ordered LiMn1.5Ni0.5O4 spinel structure becomes disturbed by the fractional cationic substitution and also stabilizes the LiMn1.5Ni0.5O4 structure with structural disorder of the Ni2+ and Mn4+ ions in the 16d octahedral sites by Fe2+ and Fe3+ ions. However, we have found that Mn3+ ion production from the redox reaction between Mn4+ and Fe2+ influences the electronic conductivity significantly, resulting in improved electrochemical oxygen evolution reaction (OER) activity for the LiMn1.38Fe0.12Ni0.5O4 structure. Surface-enhanced Fe in LiMn1.38Fe0.12Ni0.5O4 serves as the electrocatalytic active site for OER, which was verified by the density functional theory study.
科研通智能强力驱动
Strongly Powered by AbleSci AI