Can We Predict Clinical Pharmacokinetics of Highly Lipophilic Compounds by Integration of Machine Learning or In Vitro Data into Physiologically Based Models? A Feasibility Study Based on 12 Development Compounds

亲脂性 生物利用度 溶解度 基于生理学的药代动力学模型 药代动力学 效力 药理学 分配量 药物发现 化学 体外 生物系统 色谱法 立体化学 生物化学 医学 有机化学 生物
作者
Neil Parrott,Nenad Manevski,Andrés Olivares‐Morales
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:19 (11): 3858-3868 被引量:11
标识
DOI:10.1021/acs.molpharmaceut.2c00350
摘要

While high lipophilicity tends to improve potency, its effects on pharmacokinetics (PK) are complex and often unfavorable. To predict clinical PK in early drug discovery, we built human physiologically based PK (PBPK) models integrating either (i) machine learning (ML)-predicted properties or (ii) discovery stage in vitro data. Our test set was composed of 12 challenging development compounds with high lipophilicity (mean calculated log P 4.2), low plasma-free fraction (50% of compounds with fu,p < 1%), and low aqueous solubility. Predictions focused on key human PK parameters, including plasma clearance (CL), volume of distribution at steady state (Vss), and oral bioavailability (%F). For predictions of CL, the ML inputs showed acceptable accuracy and slight underprediction bias [an average absolute fold error (AAFE) of 3.55; an average fold error (AFE) of 0.95]. Surprisingly, use of measured data only slightly improved accuracy but introduced an overprediction bias (AAFE = 3.35; AFE = 2.63). Predictions of Vss were more successful, with both ML (AAFE = 2.21; AFE = 0.90) and in vitro (AAFE = 2.24; AFE = 1.72) inputs showing good accuracy and moderate bias. The %F was poorly predicted using ML inputs [average absolute prediction error (AAPE) of 45%], and use of measured data for solubility and permeability improved this to 34%. Sensitivity analysis showed that predictions of CL limited the overall accuracy of human PK predictions, partly due to high nonspecific binding of lipophilic compounds, leading to uncertainty of unbound clearance. For accurate predictions of %F, solubility was the key factor. Despite current limitations, this work encourages further development of ML models and integration of their results within PBPK models to enable human PK prediction at the drug design stage, even before compounds are synthesized. Further evaluation of this approach with more diverse chemical types is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
每天都在找完成签到,获得积分10
1秒前
1秒前
2秒前
淡烟流水发布了新的文献求助10
3秒前
3秒前
小李发布了新的文献求助30
4秒前
汉堡包应助明芬采纳,获得30
4秒前
爆米花应助彭栋采纳,获得10
4秒前
5秒前
5秒前
MeiyanZou完成签到 ,获得积分10
5秒前
8秒前
8秒前
潇湘雪月发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
感动黄豆发布了新的文献求助10
10秒前
hhhblabla应助东方红采纳,获得10
12秒前
Poker应助sb采纳,获得10
13秒前
Ginger发布了新的文献求助10
13秒前
吃骨头的猫完成签到,获得积分10
13秒前
小李完成签到,获得积分10
13秒前
13秒前
14秒前
明芬发布了新的文献求助30
16秒前
16秒前
Smile完成签到,获得积分10
16秒前
Chaoe完成签到,获得积分10
19秒前
建国发布了新的文献求助10
20秒前
闪闪w发布了新的文献求助10
23秒前
淡烟流水完成签到,获得积分10
23秒前
俏皮芷蕊完成签到,获得积分10
24秒前
完美世界应助忐忑的阑香采纳,获得10
24秒前
华仔应助兴奋千兰采纳,获得10
29秒前
Ginger完成签到,获得积分10
30秒前
潇湘雪月发布了新的文献求助10
33秒前
科研通AI5应助科研通管家采纳,获得10
35秒前
35秒前
佳琳有乐完成签到,获得积分10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989115
求助须知:如何正确求助?哪些是违规求助? 3531367
关于积分的说明 11253688
捐赠科研通 3269986
什么是DOI,文献DOI怎么找? 1804868
邀请新用户注册赠送积分活动 882078
科研通“疑难数据库(出版商)”最低求助积分说明 809105