Can We Predict Clinical Pharmacokinetics of Highly Lipophilic Compounds by Integration of Machine Learning or In Vitro Data into Physiologically Based Models? A Feasibility Study Based on 12 Development Compounds

亲脂性 生物利用度 溶解度 基于生理学的药代动力学模型 药代动力学 效力 药理学 分配量 药物发现 化学 体外 生物系统 色谱法 立体化学 生物化学 医学 有机化学 生物
作者
Neil Parrott,Nenad Manevski,Andrés Olivares‐Morales
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:19 (11): 3858-3868 被引量:11
标识
DOI:10.1021/acs.molpharmaceut.2c00350
摘要

While high lipophilicity tends to improve potency, its effects on pharmacokinetics (PK) are complex and often unfavorable. To predict clinical PK in early drug discovery, we built human physiologically based PK (PBPK) models integrating either (i) machine learning (ML)-predicted properties or (ii) discovery stage in vitro data. Our test set was composed of 12 challenging development compounds with high lipophilicity (mean calculated log P 4.2), low plasma-free fraction (50% of compounds with fu,p < 1%), and low aqueous solubility. Predictions focused on key human PK parameters, including plasma clearance (CL), volume of distribution at steady state (Vss), and oral bioavailability (%F). For predictions of CL, the ML inputs showed acceptable accuracy and slight underprediction bias [an average absolute fold error (AAFE) of 3.55; an average fold error (AFE) of 0.95]. Surprisingly, use of measured data only slightly improved accuracy but introduced an overprediction bias (AAFE = 3.35; AFE = 2.63). Predictions of Vss were more successful, with both ML (AAFE = 2.21; AFE = 0.90) and in vitro (AAFE = 2.24; AFE = 1.72) inputs showing good accuracy and moderate bias. The %F was poorly predicted using ML inputs [average absolute prediction error (AAPE) of 45%], and use of measured data for solubility and permeability improved this to 34%. Sensitivity analysis showed that predictions of CL limited the overall accuracy of human PK predictions, partly due to high nonspecific binding of lipophilic compounds, leading to uncertainty of unbound clearance. For accurate predictions of %F, solubility was the key factor. Despite current limitations, this work encourages further development of ML models and integration of their results within PBPK models to enable human PK prediction at the drug design stage, even before compounds are synthesized. Further evaluation of this approach with more diverse chemical types is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魏莱关注了科研通微信公众号
刚刚
dd发布了新的文献求助10
1秒前
yifan92完成签到,获得积分10
2秒前
3秒前
灵巧的孤容完成签到,获得积分10
4秒前
袁翰将军发布了新的文献求助10
4秒前
a雪橙完成签到 ,获得积分10
6秒前
超帅的碱完成签到,获得积分10
6秒前
7秒前
陈大海完成签到,获得积分20
7秒前
LaTeXer给积极行天的求助进行了留言
7秒前
白斯特完成签到,获得积分10
8秒前
科研混子完成签到,获得积分10
8秒前
听雨完成签到 ,获得积分10
8秒前
jianglili完成签到 ,获得积分10
8秒前
思源应助王云骢采纳,获得10
9秒前
等待的航空完成签到 ,获得积分10
10秒前
顾矜应助乔安采纳,获得10
10秒前
雪ノ下詩乃完成签到,获得积分10
11秒前
神外之城发布了新的文献求助80
11秒前
科研人完成签到,获得积分10
13秒前
莫友安完成签到 ,获得积分10
13秒前
大个应助迅速曼冬采纳,获得10
14秒前
热心市民小红花应助阿湫采纳,获得10
15秒前
快乐战神没烦恼完成签到,获得积分10
15秒前
顾矜应助魏莱采纳,获得10
15秒前
SYLH应助Rollei采纳,获得10
15秒前
16秒前
dd完成签到,获得积分20
16秒前
刻苦羽毛完成签到,获得积分10
17秒前
小粒橙完成签到 ,获得积分10
18秒前
lulu完成签到,获得积分10
21秒前
凤里完成签到 ,获得积分10
21秒前
星辰大海应助虹虹采纳,获得10
21秒前
24秒前
24秒前
cassie完成签到,获得积分10
24秒前
兴奋的乐巧完成签到,获得积分10
25秒前
jia完成签到,获得积分10
27秒前
马某关注了科研通微信公众号
27秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048