Can We Predict Clinical Pharmacokinetics of Highly Lipophilic Compounds by Integration of Machine Learning or In Vitro Data into Physiologically Based Models? A Feasibility Study Based on 12 Development Compounds

亲脂性 生物利用度 溶解度 基于生理学的药代动力学模型 药代动力学 效力 药理学 分配量 药物发现 化学 体外 生物系统 色谱法 立体化学 生物化学 有机化学 生物 医学
作者
Neil Parrott,Nenad Manevski,Andrés Olivares‐Morales
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:19 (11): 3858-3868 被引量:11
标识
DOI:10.1021/acs.molpharmaceut.2c00350
摘要

While high lipophilicity tends to improve potency, its effects on pharmacokinetics (PK) are complex and often unfavorable. To predict clinical PK in early drug discovery, we built human physiologically based PK (PBPK) models integrating either (i) machine learning (ML)-predicted properties or (ii) discovery stage in vitro data. Our test set was composed of 12 challenging development compounds with high lipophilicity (mean calculated log P 4.2), low plasma-free fraction (50% of compounds with fu,p < 1%), and low aqueous solubility. Predictions focused on key human PK parameters, including plasma clearance (CL), volume of distribution at steady state (Vss), and oral bioavailability (%F). For predictions of CL, the ML inputs showed acceptable accuracy and slight underprediction bias [an average absolute fold error (AAFE) of 3.55; an average fold error (AFE) of 0.95]. Surprisingly, use of measured data only slightly improved accuracy but introduced an overprediction bias (AAFE = 3.35; AFE = 2.63). Predictions of Vss were more successful, with both ML (AAFE = 2.21; AFE = 0.90) and in vitro (AAFE = 2.24; AFE = 1.72) inputs showing good accuracy and moderate bias. The %F was poorly predicted using ML inputs [average absolute prediction error (AAPE) of 45%], and use of measured data for solubility and permeability improved this to 34%. Sensitivity analysis showed that predictions of CL limited the overall accuracy of human PK predictions, partly due to high nonspecific binding of lipophilic compounds, leading to uncertainty of unbound clearance. For accurate predictions of %F, solubility was the key factor. Despite current limitations, this work encourages further development of ML models and integration of their results within PBPK models to enable human PK prediction at the drug design stage, even before compounds are synthesized. Further evaluation of this approach with more diverse chemical types is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的忆彤完成签到,获得积分10
1秒前
syy完成签到,获得积分10
2秒前
2秒前
四月完成签到,获得积分10
2秒前
惊鸿客发布了新的文献求助20
2秒前
黑钻完成签到,获得积分10
3秒前
东北三省发布了新的文献求助10
3秒前
张杰列夫完成签到 ,获得积分10
3秒前
多肉葡萄发布了新的文献求助10
3秒前
4秒前
4秒前
所所应助威武英姑采纳,获得10
4秒前
高xuewen完成签到,获得积分10
4秒前
syy发布了新的文献求助10
4秒前
5秒前
细心尔琴完成签到 ,获得积分10
5秒前
5秒前
5秒前
结实缘郡完成签到,获得积分10
6秒前
6秒前
卷毛完成签到,获得积分10
7秒前
哒哒发布了新的文献求助10
7秒前
alwry发布了新的文献求助10
9秒前
10秒前
LH1993发布了新的文献求助10
10秒前
YMH完成签到,获得积分10
10秒前
赘婿应助很菜的研究生采纳,获得10
10秒前
思源应助闪亮之翼采纳,获得10
10秒前
冷静蜜蜂发布了新的文献求助10
11秒前
Singularity应助mbf采纳,获得10
11秒前
11秒前
之桃完成签到,获得积分10
11秒前
13秒前
13秒前
辛勤的雅旋关注了科研通微信公众号
14秒前
Wonderflu发布了新的文献求助40
14秒前
14秒前
lurongjun发布了新的文献求助30
14秒前
八九发布了新的文献求助10
16秒前
九日完成签到,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152304
求助须知:如何正确求助?哪些是违规求助? 2803548
关于积分的说明 7854456
捐赠科研通 2461123
什么是DOI,文献DOI怎么找? 1310174
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765