Can We Predict Clinical Pharmacokinetics of Highly Lipophilic Compounds by Integration of Machine Learning or In Vitro Data into Physiologically Based Models? A Feasibility Study Based on 12 Development Compounds

亲脂性 生物利用度 溶解度 基于生理学的药代动力学模型 药代动力学 效力 药理学 分配量 药物发现 化学 体外 生物系统 色谱法 立体化学 生物化学 有机化学 生物 医学
作者
Neil Parrott,Nenad Manevski,Andrés Olivares‐Morales
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:19 (11): 3858-3868 被引量:11
标识
DOI:10.1021/acs.molpharmaceut.2c00350
摘要

While high lipophilicity tends to improve potency, its effects on pharmacokinetics (PK) are complex and often unfavorable. To predict clinical PK in early drug discovery, we built human physiologically based PK (PBPK) models integrating either (i) machine learning (ML)-predicted properties or (ii) discovery stage in vitro data. Our test set was composed of 12 challenging development compounds with high lipophilicity (mean calculated log P 4.2), low plasma-free fraction (50% of compounds with fu,p < 1%), and low aqueous solubility. Predictions focused on key human PK parameters, including plasma clearance (CL), volume of distribution at steady state (Vss), and oral bioavailability (%F). For predictions of CL, the ML inputs showed acceptable accuracy and slight underprediction bias [an average absolute fold error (AAFE) of 3.55; an average fold error (AFE) of 0.95]. Surprisingly, use of measured data only slightly improved accuracy but introduced an overprediction bias (AAFE = 3.35; AFE = 2.63). Predictions of Vss were more successful, with both ML (AAFE = 2.21; AFE = 0.90) and in vitro (AAFE = 2.24; AFE = 1.72) inputs showing good accuracy and moderate bias. The %F was poorly predicted using ML inputs [average absolute prediction error (AAPE) of 45%], and use of measured data for solubility and permeability improved this to 34%. Sensitivity analysis showed that predictions of CL limited the overall accuracy of human PK predictions, partly due to high nonspecific binding of lipophilic compounds, leading to uncertainty of unbound clearance. For accurate predictions of %F, solubility was the key factor. Despite current limitations, this work encourages further development of ML models and integration of their results within PBPK models to enable human PK prediction at the drug design stage, even before compounds are synthesized. Further evaluation of this approach with more diverse chemical types is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
知性的觅露完成签到,获得积分10
1秒前
朱湋帆完成签到 ,获得积分10
1秒前
devil发布了新的文献求助10
2秒前
乐乐应助咸鱼一号采纳,获得10
3秒前
5秒前
youjiang完成签到,获得积分10
5秒前
devil完成签到,获得积分10
5秒前
6秒前
6秒前
舞拽拽完成签到 ,获得积分10
8秒前
sunaijia完成签到,获得积分0
8秒前
雪白雍发布了新的文献求助10
8秒前
XiangXu完成签到,获得积分10
9秒前
guajiguaji发布了新的文献求助10
9秒前
9秒前
CipherSage应助liuq采纳,获得10
9秒前
优美的冰巧完成签到 ,获得积分10
10秒前
11秒前
11秒前
汤圆发布了新的文献求助50
11秒前
TT发布了新的文献求助10
12秒前
舒适的天奇完成签到 ,获得积分10
12秒前
YOLO完成签到 ,获得积分10
13秒前
刘奶奶的牛奶完成签到,获得积分10
14秒前
lio发布了新的文献求助10
16秒前
17秒前
17秒前
凝子老师发布了新的文献求助10
18秒前
白瓜完成签到 ,获得积分10
18秒前
123完成签到,获得积分10
20秒前
20秒前
斯文钢笔完成签到 ,获得积分10
21秒前
Hh发布了新的文献求助10
22秒前
司马天寿发布了新的文献求助10
23秒前
上官若男应助lio采纳,获得10
23秒前
wsnice应助呼呼采纳,获得20
25秒前
科研通AI5应助善良的路灯采纳,获得10
25秒前
27秒前
司马天寿完成签到,获得积分20
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849