原材料
羟基烷酸
生化工程
废物管理
化学工业
过程(计算)
自动氧化
化学
氧化法
环境科学
有机化学
制浆造纸工业
细菌
计算机科学
工程类
生物
遗传学
操作系统
作者
Kevin P. Sullivan,Allison Z. Werner,Kelsey J. Ramirez,Lucas D. Ellis,Jeremy R. Bussard,Brenna A. Black,David G. Brandner,Felicia Bratti,Bonnie L. Buss,Xueming Dong,Stefan J. Haugen,Morgan A. Ingraham,Mikhail O. Konev,William E. Michener,Joel Miscall,Isabel Pardo,Sean P. Woodworth,Adam M. Guss,Yuriy Román‐Leshkov,Shannon S. Stahl
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2022-10-13
卷期号:378 (6616): 207-211
被引量:331
标识
DOI:10.1126/science.abo4626
摘要
Mixed plastics waste represents an abundant and largely untapped feedstock for the production of valuable products. The chemical diversity and complexity of these materials, however, present major barriers to realizing this opportunity. In this work, we show that metal-catalyzed autoxidation depolymerizes comingled polymers into a mixture of oxygenated small molecules that are advantaged substrates for biological conversion. We engineer a robust soil bacterium, Pseudomonas putida, to funnel these oxygenated compounds into a single exemplary chemical product, either β-ketoadipate or polyhydroxyalkanoates. This hybrid process establishes a strategy for the selective conversion of mixed plastics waste into useful chemical products.
科研通智能强力驱动
Strongly Powered by AbleSci AI