医学
荟萃分析
下腔静脉
科克伦图书馆
接收机工作特性
超声科
血流动力学
置信区间
超声波
曲线下面积
合并方差
内科学
心脏病学
外科
放射科
作者
Fernando de Lima Carioca,Fabiana Mendes de Souza,Thalita Belato de Souza,Aline Junqueira Rubio,Marcelo Barciela Brandão,Roberto José Negrão Nogueira,Tiago Henrique de Souza
摘要
Point-of-care ultrasonography (POCUS) is proposed as a valuable method for hemodynamic monitoring and several ultrasound-based predictors of fluid responsiveness have been studied. The main objective of this study was to assess the accuracy of these predictors in children.PubMed, Embase, Scopus, ClinicalTrials.gov, and Cochrane Library databases were searched for relevant publications through July 2022. Pediatric studies reporting accuracy estimates of ultrasonographic predictors of fluid responsiveness were included since they had used a standard definition of fluid responsiveness and had performed an adequate fluid challenge.Twenty-three studies involving 1028 fluid boluses were included, and 12 predictors were identified. A positive response to fluid infusion was observed in 59.7% of cases. The vast majority of participants were mechanically ventilated (93.4%). The respiratory variation in aortic blood flow peak velocity (∆Vpeak) was the most studied predictor, followed by the respiratory variation in inferior vena cava diameter (∆IVC). The pooled sensitivity and specificity of ∆Vpeak were 0.84 (95% CI, 0.76-0.90) and 0.82 (95% CI, 0.75-0.87), respectively, and the area under the summary receiver operating characteristic curve (AUSROC) was 0.89 (95% CI, 0.86-0.92). The ∆IVC presented a pooled sensitivity and specificity of 0.79 (95% CI, 0.62-0.90) and 0.70 (95% CI, 0.51-0.84), respectively, and an AUSROC of 0.81 (95% CI, 0.78-0.85). Significant heterogeneity in accuracy estimates across studies was observed.POCUS has the potential to accurately predict fluid responsiveness in children. However, only ∆Vpeak was found to be a reliable predictor. There is a lack of evidence supporting the use of POCUS to guide fluid therapy in spontaneously breathing children.
科研通智能强力驱动
Strongly Powered by AbleSci AI