Training recurrent neural networks as generative neural networks for molecular structures: how does it impact drug discovery?

计算机科学 人工神经网络 生成语法 人工智能 循环神经网络 生成模型 药物发现 深度学习 机器学习 代表(政治) 符号 生物信息学 生物 算术 数学 政治 政治学 法学
作者
Sofia D’Souza,K. V. Prema,S. Balaji
出处
期刊:Expert Opinion on Drug Discovery [Informa]
卷期号:17 (10): 1071-1079 被引量:2
标识
DOI:10.1080/17460441.2023.2134340
摘要

Deep learning approaches have become popular in recent years in de novo drug design. Generative models for molecule generation and optimization have shown promising results. Molecules trained on different chemical data could regenerate molecules that were similar to the query molecule, thus supporting lead optimization. Recurrent neural network-based generative models have demonstrated application in low-data drug discovery, fragment-based drug design and in lead optimization.In this review, we have provided an overview of recurrent neural network models and their variants for molecule generation with recent examples. The input representation of molecules as SMILES and molecular graphs have been discussed. The evaluation benchmarks and metrics used in generative neural network models are also highlighted. For this, ScienceDirect, Web of Science, and Google Scholar databases were searched with the article's keywords and their combinations to retrieve the most relevant and up-to-date information.The simplicity of SMILES notation makes it suitable for training a sequence-based model such as a recurrent neural network. However, models that could be trained on molecular graphs to generate molecular structures which could be synthesized could open new possibility for valid molecule generation and synthetic feasibility.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WEI发布了新的文献求助30
1秒前
不知名的呆毛应助惠飞薇采纳,获得10
2秒前
张凤发布了新的文献求助30
3秒前
南城花开完成签到,获得积分10
4秒前
优雅的怀莲完成签到,获得积分10
4秒前
ZY完成签到,获得积分10
4秒前
tqg发布了新的文献求助10
5秒前
方半仙发布了新的文献求助30
7秒前
8秒前
9秒前
丘比特应助一堃采纳,获得10
12秒前
nsc发布了新的文献求助10
13秒前
13秒前
15秒前
干净溪流完成签到,获得积分10
16秒前
闪闪糖豆发布了新的文献求助10
17秒前
大个应助鱼鱼子采纳,获得10
20秒前
20秒前
共享精神应助nsc采纳,获得10
20秒前
21秒前
22秒前
猪猪hero发布了新的文献求助10
23秒前
26秒前
26秒前
28秒前
28秒前
我是老大应助mcs0808采纳,获得30
28秒前
29秒前
31秒前
fev123完成签到,获得积分10
31秒前
gww发布了新的文献求助10
31秒前
白山发布了新的文献求助20
32秒前
周周发布了新的文献求助10
32秒前
wanci应助辛勤从霜采纳,获得10
32秒前
33秒前
Aokcers发布了新的文献求助10
34秒前
35秒前
情怀应助Raymondhu采纳,获得10
35秒前
37秒前
39秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
中介效应和调节效应模型进阶 400
Refractive Index Metrology of Optical Polymers 400
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3443733
求助须知:如何正确求助?哪些是违规求助? 3039898
关于积分的说明 8978605
捐赠科研通 2728387
什么是DOI,文献DOI怎么找? 1496507
科研通“疑难数据库(出版商)”最低求助积分说明 691668
邀请新用户注册赠送积分活动 689213