AUTOMATED MACHINE LEARNING WITH AUTOGLUON TO PREDICT POSTOPERATIVE PNEUMONIA USING THE AMERICAN COLLEGE OF SURGEONS’ NATIONAL SURGICAL QUALITY IMPROVEMENT PROGRAM DATABASE

布里氏评分 医学 逻辑回归 机器学习 肺炎 人工智能 接收机工作特性 数据库 退伍军人事务部 内科学 计算机科学
作者
KENNETH BRILL,AVINASH THANGIRALA,YIN APHINYANAPHONGS,Ji Chen,ERIC HU,ANDREW C KELLEHER,JACOB MARTIN,JACOB F. OEDING,NICOLAI OSTBERG,GREGORY KATZ,SHELLY BREJT,RUDRA RAMANATHAN,KAREN KAN
出处
期刊:Chest [Elsevier]
卷期号:162 (4): A2595-A2596 被引量:1
标识
DOI:10.1016/j.chest.2022.08.2121
摘要

SESSION TITLE: Late Breaking Chest Infections PostersSESSION TYPE: Original Investigation PostersPRESENTED ON: 10/18/2022 01:30 pm - 02:30 pmPURPOSE: Risk calculators to predict post-operative pneumonias often rely on logistic regression (LR) analysis. Major risk calculators, including ARISCAT, are based on logistic regressions that only take into account a limited number of variables. Machine learning models are able incorporate a greater number of input variables by identifying non-linear relationships. Automated machine learning (AutoML) processes regularly outperform regular machine learning (ML) and LR methods for predictive accuracy. AutoML systems have not yet been applied to predict post-operative pneumonia.METHODS: We used an AutoML system developed and released by Amazon in 2020, AutoGluon v0.3.1, to predict post-operative pneumonia in the 2019 ACS NSQIP database. Post-operative pneumonia was defined as a pneumonia that occurred within 30 days of the surgery. Models were trained for four hours to optimize performance on the Brier score, with lower being better. Validation of all performance metrics was done using the 2019 ACS NSQIP database. Each model was plotted on AUROC and AUC-PR curves to compare performance across different models.RESULTS: Our dataset included 3,049,617 unique patients, with a median age of 58.0 and 56.8% female. Our patient set was diverse, with 69.8% of patients being white and 7.9% of Hispanic descent. Of all the patients in the dataset, there were 27,167 post-operative pneumonias (0.9%). Brier scores were calculated for each model with the top performing model being an ensembled LightGBM model having a Brier score of 0.0084 on the validation set. The corresponding AUROC and AUC-PR was 0.879 and 0.072 respectively.CONCLUSIONS: Automated machine learning models offer similar if not better discriminatory characteristics to existing post-operative pneumonia calculators. Benefits of these models include recognition of non-linear relationships between variables and a higher number of variables incorporated into model construction. Our AutoML models, and specifically our top-performing ensembled LightGBM model had Brier scores, AUROC, and AUC-PR that were similar or better than those of currently used logistic regression risk calculators. Based on these results, AutoML analyses should be considered for risk estimation of post-operative pneumonia.CLINICAL IMPLICATIONS: Establishing more accurate, reliable, and holistic risk stratification model has the potential to better assess the need for pre-operative risk optimization and ascertain which patients are optimized from a pulmonary perspective to procede to the operating room. Logistic regressions to date have provided useful but incomplete prediction models for important perioperative outcomes. AutoML affords the opportunity to consider a wide range of demographic, epidemiologic, and clinical factors to enhance our ability to discern perioperative risk and improve our perioperative outcomes.DISCLOSURES:No relevant relationships by Yin AphinyanaphongsNo relevant relationships by Shelly BrejtNo relevant relationships by Kenneth BrillNo relevant relationships by Ji ChenNo relevant relationships by Eric HuNo relevant relationships by Karen KanNo relevant relationships by Gregory KatzNo relevant relationships by Andrew KelleherNo relevant relationships by Jacob MartinNo relevant relationships by Jacob OedingNo relevant relationships by Nicolai OstbergNo relevant relationships by RUDRA RAMANATHANNo relevant relationships by Avinash Thangirala SESSION TITLE: Late Breaking Chest Infections Posters SESSION TYPE: Original Investigation Posters PRESENTED ON: 10/18/2022 01:30 pm - 02:30 pm PURPOSE: Risk calculators to predict post-operative pneumonias often rely on logistic regression (LR) analysis. Major risk calculators, including ARISCAT, are based on logistic regressions that only take into account a limited number of variables. Machine learning models are able incorporate a greater number of input variables by identifying non-linear relationships. Automated machine learning (AutoML) processes regularly outperform regular machine learning (ML) and LR methods for predictive accuracy. AutoML systems have not yet been applied to predict post-operative pneumonia. METHODS: We used an AutoML system developed and released by Amazon in 2020, AutoGluon v0.3.1, to predict post-operative pneumonia in the 2019 ACS NSQIP database. Post-operative pneumonia was defined as a pneumonia that occurred within 30 days of the surgery. Models were trained for four hours to optimize performance on the Brier score, with lower being better. Validation of all performance metrics was done using the 2019 ACS NSQIP database. Each model was plotted on AUROC and AUC-PR curves to compare performance across different models. RESULTS: Our dataset included 3,049,617 unique patients, with a median age of 58.0 and 56.8% female. Our patient set was diverse, with 69.8% of patients being white and 7.9% of Hispanic descent. Of all the patients in the dataset, there were 27,167 post-operative pneumonias (0.9%). Brier scores were calculated for each model with the top performing model being an ensembled LightGBM model having a Brier score of 0.0084 on the validation set. The corresponding AUROC and AUC-PR was 0.879 and 0.072 respectively. CONCLUSIONS: Automated machine learning models offer similar if not better discriminatory characteristics to existing post-operative pneumonia calculators. Benefits of these models include recognition of non-linear relationships between variables and a higher number of variables incorporated into model construction. Our AutoML models, and specifically our top-performing ensembled LightGBM model had Brier scores, AUROC, and AUC-PR that were similar or better than those of currently used logistic regression risk calculators. Based on these results, AutoML analyses should be considered for risk estimation of post-operative pneumonia. CLINICAL IMPLICATIONS: Establishing more accurate, reliable, and holistic risk stratification model has the potential to better assess the need for pre-operative risk optimization and ascertain which patients are optimized from a pulmonary perspective to procede to the operating room. Logistic regressions to date have provided useful but incomplete prediction models for important perioperative outcomes. AutoML affords the opportunity to consider a wide range of demographic, epidemiologic, and clinical factors to enhance our ability to discern perioperative risk and improve our perioperative outcomes. DISCLOSURES: No relevant relationships by Yin Aphinyanaphongs No relevant relationships by Shelly Brejt No relevant relationships by Kenneth Brill No relevant relationships by Ji Chen No relevant relationships by Eric Hu No relevant relationships by Karen Kan No relevant relationships by Gregory Katz No relevant relationships by Andrew Kelleher No relevant relationships by Jacob Martin No relevant relationships by Jacob Oeding No relevant relationships by Nicolai Ostberg No relevant relationships by RUDRA RAMANATHAN No relevant relationships by Avinash Thangirala
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WindDreamer完成签到,获得积分10
刚刚
Enri完成签到,获得积分10
刚刚
1秒前
领导范儿应助LSi奇采纳,获得10
1秒前
吴世勋发布了新的文献求助10
3秒前
天道酬勤发布了新的文献求助10
4秒前
冷静的铅笔完成签到,获得积分10
4秒前
学啊学啊发发完成签到,获得积分20
5秒前
田様应助xwl采纳,获得10
6秒前
Hayat发布了新的文献求助30
6秒前
7秒前
忧虑的火龙果完成签到,获得积分20
9秒前
铎铎铎完成签到 ,获得积分10
12秒前
彭于晏应助吴世勋采纳,获得10
13秒前
13秒前
13秒前
angki77发布了新的文献求助10
14秒前
克洛里完成签到,获得积分10
15秒前
天道酬勤完成签到,获得积分20
15秒前
落寞白曼完成签到,获得积分10
15秒前
xwl发布了新的文献求助10
18秒前
19秒前
克洛里发布了新的文献求助10
19秒前
21秒前
账户已注销应助kento采纳,获得50
21秒前
Cherry发布了新的文献求助10
25秒前
25秒前
26秒前
活泼半凡完成签到 ,获得积分10
26秒前
Snow完成签到 ,获得积分10
26秒前
阿水完成签到,获得积分10
26秒前
26秒前
28秒前
羡鱼发布了新的文献求助10
30秒前
隐形曼青应助黄金矿工采纳,获得10
31秒前
张远幸发布了新的文献求助10
31秒前
顾矜应助荔枝要吃冰的采纳,获得20
31秒前
33秒前
log完成签到 ,获得积分10
34秒前
鹏程完成签到 ,获得积分10
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135055
求助须知:如何正确求助?哪些是违规求助? 2786055
关于积分的说明 7774839
捐赠科研通 2441865
什么是DOI,文献DOI怎么找? 1298217
科研通“疑难数据库(出版商)”最低求助积分说明 625108
版权声明 600825