AUTOMATED MACHINE LEARNING WITH AUTOGLUON TO PREDICT POSTOPERATIVE PNEUMONIA USING THE AMERICAN COLLEGE OF SURGEONS’ NATIONAL SURGICAL QUALITY IMPROVEMENT PROGRAM DATABASE

布里氏评分 医学 逻辑回归 机器学习 肺炎 人工智能 接收机工作特性 数据库 退伍军人事务部 内科学 计算机科学
作者
KENNETH BRILL,AVINASH THANGIRALA,YIN APHINYANAPHONGS,Ji Chen,ERIC HU,ANDREW C KELLEHER,JACOB MARTIN,JACOB F. OEDING,NICOLAI OSTBERG,GREGORY KATZ,SHELLY BREJT,RUDRA RAMANATHAN,KAREN KAN
出处
期刊:Chest [Elsevier]
卷期号:162 (4): A2595-A2596 被引量:1
标识
DOI:10.1016/j.chest.2022.08.2121
摘要

SESSION TITLE: Late Breaking Chest Infections PostersSESSION TYPE: Original Investigation PostersPRESENTED ON: 10/18/2022 01:30 pm - 02:30 pmPURPOSE: Risk calculators to predict post-operative pneumonias often rely on logistic regression (LR) analysis. Major risk calculators, including ARISCAT, are based on logistic regressions that only take into account a limited number of variables. Machine learning models are able incorporate a greater number of input variables by identifying non-linear relationships. Automated machine learning (AutoML) processes regularly outperform regular machine learning (ML) and LR methods for predictive accuracy. AutoML systems have not yet been applied to predict post-operative pneumonia.METHODS: We used an AutoML system developed and released by Amazon in 2020, AutoGluon v0.3.1, to predict post-operative pneumonia in the 2019 ACS NSQIP database. Post-operative pneumonia was defined as a pneumonia that occurred within 30 days of the surgery. Models were trained for four hours to optimize performance on the Brier score, with lower being better. Validation of all performance metrics was done using the 2019 ACS NSQIP database. Each model was plotted on AUROC and AUC-PR curves to compare performance across different models.RESULTS: Our dataset included 3,049,617 unique patients, with a median age of 58.0 and 56.8% female. Our patient set was diverse, with 69.8% of patients being white and 7.9% of Hispanic descent. Of all the patients in the dataset, there were 27,167 post-operative pneumonias (0.9%). Brier scores were calculated for each model with the top performing model being an ensembled LightGBM model having a Brier score of 0.0084 on the validation set. The corresponding AUROC and AUC-PR was 0.879 and 0.072 respectively.CONCLUSIONS: Automated machine learning models offer similar if not better discriminatory characteristics to existing post-operative pneumonia calculators. Benefits of these models include recognition of non-linear relationships between variables and a higher number of variables incorporated into model construction. Our AutoML models, and specifically our top-performing ensembled LightGBM model had Brier scores, AUROC, and AUC-PR that were similar or better than those of currently used logistic regression risk calculators. Based on these results, AutoML analyses should be considered for risk estimation of post-operative pneumonia.CLINICAL IMPLICATIONS: Establishing more accurate, reliable, and holistic risk stratification model has the potential to better assess the need for pre-operative risk optimization and ascertain which patients are optimized from a pulmonary perspective to procede to the operating room. Logistic regressions to date have provided useful but incomplete prediction models for important perioperative outcomes. AutoML affords the opportunity to consider a wide range of demographic, epidemiologic, and clinical factors to enhance our ability to discern perioperative risk and improve our perioperative outcomes.DISCLOSURES:No relevant relationships by Yin AphinyanaphongsNo relevant relationships by Shelly BrejtNo relevant relationships by Kenneth BrillNo relevant relationships by Ji ChenNo relevant relationships by Eric HuNo relevant relationships by Karen KanNo relevant relationships by Gregory KatzNo relevant relationships by Andrew KelleherNo relevant relationships by Jacob MartinNo relevant relationships by Jacob OedingNo relevant relationships by Nicolai OstbergNo relevant relationships by RUDRA RAMANATHANNo relevant relationships by Avinash Thangirala SESSION TITLE: Late Breaking Chest Infections Posters SESSION TYPE: Original Investigation Posters PRESENTED ON: 10/18/2022 01:30 pm - 02:30 pm PURPOSE: Risk calculators to predict post-operative pneumonias often rely on logistic regression (LR) analysis. Major risk calculators, including ARISCAT, are based on logistic regressions that only take into account a limited number of variables. Machine learning models are able incorporate a greater number of input variables by identifying non-linear relationships. Automated machine learning (AutoML) processes regularly outperform regular machine learning (ML) and LR methods for predictive accuracy. AutoML systems have not yet been applied to predict post-operative pneumonia. METHODS: We used an AutoML system developed and released by Amazon in 2020, AutoGluon v0.3.1, to predict post-operative pneumonia in the 2019 ACS NSQIP database. Post-operative pneumonia was defined as a pneumonia that occurred within 30 days of the surgery. Models were trained for four hours to optimize performance on the Brier score, with lower being better. Validation of all performance metrics was done using the 2019 ACS NSQIP database. Each model was plotted on AUROC and AUC-PR curves to compare performance across different models. RESULTS: Our dataset included 3,049,617 unique patients, with a median age of 58.0 and 56.8% female. Our patient set was diverse, with 69.8% of patients being white and 7.9% of Hispanic descent. Of all the patients in the dataset, there were 27,167 post-operative pneumonias (0.9%). Brier scores were calculated for each model with the top performing model being an ensembled LightGBM model having a Brier score of 0.0084 on the validation set. The corresponding AUROC and AUC-PR was 0.879 and 0.072 respectively. CONCLUSIONS: Automated machine learning models offer similar if not better discriminatory characteristics to existing post-operative pneumonia calculators. Benefits of these models include recognition of non-linear relationships between variables and a higher number of variables incorporated into model construction. Our AutoML models, and specifically our top-performing ensembled LightGBM model had Brier scores, AUROC, and AUC-PR that were similar or better than those of currently used logistic regression risk calculators. Based on these results, AutoML analyses should be considered for risk estimation of post-operative pneumonia. CLINICAL IMPLICATIONS: Establishing more accurate, reliable, and holistic risk stratification model has the potential to better assess the need for pre-operative risk optimization and ascertain which patients are optimized from a pulmonary perspective to procede to the operating room. Logistic regressions to date have provided useful but incomplete prediction models for important perioperative outcomes. AutoML affords the opportunity to consider a wide range of demographic, epidemiologic, and clinical factors to enhance our ability to discern perioperative risk and improve our perioperative outcomes. DISCLOSURES: No relevant relationships by Yin Aphinyanaphongs No relevant relationships by Shelly Brejt No relevant relationships by Kenneth Brill No relevant relationships by Ji Chen No relevant relationships by Eric Hu No relevant relationships by Karen Kan No relevant relationships by Gregory Katz No relevant relationships by Andrew Kelleher No relevant relationships by Jacob Martin No relevant relationships by Jacob Oeding No relevant relationships by Nicolai Ostberg No relevant relationships by RUDRA RAMANATHAN No relevant relationships by Avinash Thangirala

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷酷的盼山完成签到,获得积分10
刚刚
Eternity2025发布了新的文献求助10
刚刚
multi完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
taster发布了新的文献求助10
2秒前
缓慢妙芙发布了新的文献求助20
2秒前
ctttt发布了新的文献求助10
2秒前
傲娇的康乃馨完成签到,获得积分20
2秒前
2秒前
we1完成签到,获得积分20
3秒前
聂青枫完成签到,获得积分10
3秒前
完美世界应助蕾蕾蕾采纳,获得10
3秒前
WSGQT完成签到,获得积分10
4秒前
qwe完成签到,获得积分10
4秒前
4秒前
科研小白完成签到,获得积分10
4秒前
4秒前
dd发布了新的文献求助10
5秒前
gdh完成签到,获得积分10
5秒前
充电宝应助漫漫亦慢慢采纳,获得10
5秒前
6秒前
碧蓝靳发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
枫溪发布了新的文献求助10
7秒前
7秒前
Kate发布了新的文献求助10
7秒前
小蘑菇应助踏实志泽采纳,获得10
7秒前
大模型应助JINtian采纳,获得10
7秒前
7秒前
Lucas应助寒冷的泽洋采纳,获得10
8秒前
Ted完成签到,获得积分10
8秒前
8秒前
JamesPei应助dengdengdeng采纳,获得10
8秒前
Owen应助ctttt采纳,获得10
8秒前
文艺的青旋完成签到 ,获得积分10
8秒前
9秒前
开放思远发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665352
求助须知:如何正确求助?哪些是违规求助? 4876309
关于积分的说明 15113352
捐赠科研通 4824419
什么是DOI,文献DOI怎么找? 2582766
邀请新用户注册赠送积分活动 1536717
关于科研通互助平台的介绍 1495328