AUTOMATED MACHINE LEARNING WITH AUTOGLUON TO PREDICT POSTOPERATIVE PNEUMONIA USING THE AMERICAN COLLEGE OF SURGEONS’ NATIONAL SURGICAL QUALITY IMPROVEMENT PROGRAM DATABASE

布里氏评分 医学 逻辑回归 机器学习 肺炎 人工智能 接收机工作特性 数据库 退伍军人事务部 内科学 计算机科学
作者
KENNETH BRILL,AVINASH THANGIRALA,YIN APHINYANAPHONGS,Ji Chen,ERIC HU,ANDREW C KELLEHER,JACOB MARTIN,JACOB F. OEDING,NICOLAI OSTBERG,GREGORY KATZ,SHELLY BREJT,RUDRA RAMANATHAN,KAREN KAN
出处
期刊:Chest [Elsevier BV]
卷期号:162 (4): A2595-A2596 被引量:1
标识
DOI:10.1016/j.chest.2022.08.2121
摘要

SESSION TITLE: Late Breaking Chest Infections PostersSESSION TYPE: Original Investigation PostersPRESENTED ON: 10/18/2022 01:30 pm - 02:30 pmPURPOSE: Risk calculators to predict post-operative pneumonias often rely on logistic regression (LR) analysis. Major risk calculators, including ARISCAT, are based on logistic regressions that only take into account a limited number of variables. Machine learning models are able incorporate a greater number of input variables by identifying non-linear relationships. Automated machine learning (AutoML) processes regularly outperform regular machine learning (ML) and LR methods for predictive accuracy. AutoML systems have not yet been applied to predict post-operative pneumonia.METHODS: We used an AutoML system developed and released by Amazon in 2020, AutoGluon v0.3.1, to predict post-operative pneumonia in the 2019 ACS NSQIP database. Post-operative pneumonia was defined as a pneumonia that occurred within 30 days of the surgery. Models were trained for four hours to optimize performance on the Brier score, with lower being better. Validation of all performance metrics was done using the 2019 ACS NSQIP database. Each model was plotted on AUROC and AUC-PR curves to compare performance across different models.RESULTS: Our dataset included 3,049,617 unique patients, with a median age of 58.0 and 56.8% female. Our patient set was diverse, with 69.8% of patients being white and 7.9% of Hispanic descent. Of all the patients in the dataset, there were 27,167 post-operative pneumonias (0.9%). Brier scores were calculated for each model with the top performing model being an ensembled LightGBM model having a Brier score of 0.0084 on the validation set. The corresponding AUROC and AUC-PR was 0.879 and 0.072 respectively.CONCLUSIONS: Automated machine learning models offer similar if not better discriminatory characteristics to existing post-operative pneumonia calculators. Benefits of these models include recognition of non-linear relationships between variables and a higher number of variables incorporated into model construction. Our AutoML models, and specifically our top-performing ensembled LightGBM model had Brier scores, AUROC, and AUC-PR that were similar or better than those of currently used logistic regression risk calculators. Based on these results, AutoML analyses should be considered for risk estimation of post-operative pneumonia.CLINICAL IMPLICATIONS: Establishing more accurate, reliable, and holistic risk stratification model has the potential to better assess the need for pre-operative risk optimization and ascertain which patients are optimized from a pulmonary perspective to procede to the operating room. Logistic regressions to date have provided useful but incomplete prediction models for important perioperative outcomes. AutoML affords the opportunity to consider a wide range of demographic, epidemiologic, and clinical factors to enhance our ability to discern perioperative risk and improve our perioperative outcomes.DISCLOSURES:No relevant relationships by Yin AphinyanaphongsNo relevant relationships by Shelly BrejtNo relevant relationships by Kenneth BrillNo relevant relationships by Ji ChenNo relevant relationships by Eric HuNo relevant relationships by Karen KanNo relevant relationships by Gregory KatzNo relevant relationships by Andrew KelleherNo relevant relationships by Jacob MartinNo relevant relationships by Jacob OedingNo relevant relationships by Nicolai OstbergNo relevant relationships by RUDRA RAMANATHANNo relevant relationships by Avinash Thangirala SESSION TITLE: Late Breaking Chest Infections Posters SESSION TYPE: Original Investigation Posters PRESENTED ON: 10/18/2022 01:30 pm - 02:30 pm PURPOSE: Risk calculators to predict post-operative pneumonias often rely on logistic regression (LR) analysis. Major risk calculators, including ARISCAT, are based on logistic regressions that only take into account a limited number of variables. Machine learning models are able incorporate a greater number of input variables by identifying non-linear relationships. Automated machine learning (AutoML) processes regularly outperform regular machine learning (ML) and LR methods for predictive accuracy. AutoML systems have not yet been applied to predict post-operative pneumonia. METHODS: We used an AutoML system developed and released by Amazon in 2020, AutoGluon v0.3.1, to predict post-operative pneumonia in the 2019 ACS NSQIP database. Post-operative pneumonia was defined as a pneumonia that occurred within 30 days of the surgery. Models were trained for four hours to optimize performance on the Brier score, with lower being better. Validation of all performance metrics was done using the 2019 ACS NSQIP database. Each model was plotted on AUROC and AUC-PR curves to compare performance across different models. RESULTS: Our dataset included 3,049,617 unique patients, with a median age of 58.0 and 56.8% female. Our patient set was diverse, with 69.8% of patients being white and 7.9% of Hispanic descent. Of all the patients in the dataset, there were 27,167 post-operative pneumonias (0.9%). Brier scores were calculated for each model with the top performing model being an ensembled LightGBM model having a Brier score of 0.0084 on the validation set. The corresponding AUROC and AUC-PR was 0.879 and 0.072 respectively. CONCLUSIONS: Automated machine learning models offer similar if not better discriminatory characteristics to existing post-operative pneumonia calculators. Benefits of these models include recognition of non-linear relationships between variables and a higher number of variables incorporated into model construction. Our AutoML models, and specifically our top-performing ensembled LightGBM model had Brier scores, AUROC, and AUC-PR that were similar or better than those of currently used logistic regression risk calculators. Based on these results, AutoML analyses should be considered for risk estimation of post-operative pneumonia. CLINICAL IMPLICATIONS: Establishing more accurate, reliable, and holistic risk stratification model has the potential to better assess the need for pre-operative risk optimization and ascertain which patients are optimized from a pulmonary perspective to procede to the operating room. Logistic regressions to date have provided useful but incomplete prediction models for important perioperative outcomes. AutoML affords the opportunity to consider a wide range of demographic, epidemiologic, and clinical factors to enhance our ability to discern perioperative risk and improve our perioperative outcomes. DISCLOSURES: No relevant relationships by Yin Aphinyanaphongs No relevant relationships by Shelly Brejt No relevant relationships by Kenneth Brill No relevant relationships by Ji Chen No relevant relationships by Eric Hu No relevant relationships by Karen Kan No relevant relationships by Gregory Katz No relevant relationships by Andrew Kelleher No relevant relationships by Jacob Martin No relevant relationships by Jacob Oeding No relevant relationships by Nicolai Ostberg No relevant relationships by RUDRA RAMANATHAN No relevant relationships by Avinash Thangirala
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助jjhh采纳,获得10
1秒前
1秒前
科研狂人发布了新的文献求助10
1秒前
咕噜噜完成签到,获得积分10
2秒前
Maggie完成签到,获得积分10
4秒前
小高要努力完成签到,获得积分20
4秒前
4秒前
4秒前
张涛发布了新的文献求助200
4秒前
kitekool2811ki完成签到,获得积分10
5秒前
咕噜噜发布了新的文献求助10
5秒前
唯美完成签到,获得积分10
5秒前
黄浩文发布了新的文献求助10
5秒前
星空_完成签到 ,获得积分10
6秒前
6秒前
JamesPei应助123456采纳,获得10
6秒前
成绩好完成签到,获得积分10
6秒前
清脆大树完成签到,获得积分10
7秒前
mm发布了新的文献求助10
7秒前
lucky完成签到 ,获得积分10
8秒前
8秒前
10秒前
11秒前
廖嘻嘻完成签到 ,获得积分10
11秒前
Gloria发布了新的文献求助10
12秒前
jjhh发布了新的文献求助10
12秒前
12秒前
zheng能量完成签到,获得积分10
13秒前
喵喵喵完成签到,获得积分10
13秒前
zhh发布了新的文献求助10
13秒前
NexusExplorer应助yexu采纳,获得10
13秒前
所所应助犬狗狗采纳,获得10
14秒前
14秒前
Hello应助仙姝采纳,获得10
14秒前
14秒前
SYLH应助柠静樨采纳,获得10
15秒前
懵懂的寻冬完成签到,获得积分10
16秒前
16秒前
进退须臾发布了新的文献求助10
16秒前
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4017023
求助须知:如何正确求助?哪些是违规求助? 3557119
关于积分的说明 11323948
捐赠科研通 3289980
什么是DOI,文献DOI怎么找? 1812637
邀请新用户注册赠送积分活动 888165
科研通“疑难数据库(出版商)”最低求助积分说明 812158