普勒贡
门托
代谢物
单萜
立体化学
化学
二羟基化
植物
生物
生物化学
精油
催化作用
对映选择合成
作者
Rodney Croteau,K.V. Venkatachalam
标识
DOI:10.1016/0003-9861(86)90007-x
摘要
Piperitenone is commonly considered to be the key intermediate in the conversion of (-)-isopiperitenone to (+)-pulegone in peppermint; however, [3H]piperitenone gave rise only to the inert metabolite (+)-piperitone when incubated with peppermint leaf discs. Under identical conditions, (-)-[3H]isopiperitenone was efficiently incorporated into (+)-pulegone, (-)-menthone, and (+)-isomenthone in leaf discs, and yielded an additional metabolite identified as (+)-cis-isopulegone; piperitenone was poorly labeled. Moreover, (+)-cis-[3H]isopulegone was rapidly converted to (+)-pulegone, (-)-menthone, and (+)-isomenthone in leaf discs, and the reduction of (+)-[3H]pulegone to (-)-menthone and (+)-isomenthone was similarly documented. Each step of the pathway was demonstrated in a crude soluble preparation from peppermint leaf epidermis and each of the relevant enzymes was partially purified in order to compare relative rates of catalysis. The results of these studies indicate that the endocyclic double bond of (-)-isopiperitenone is reduced to yield (+)-cis-isopulegone, which is isomerized to (+)-pulegone as the immediate precursor of (-)-menthone and (+)-isomenthone, and they rule out piperitenone as an intermediate of the pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI