隐马尔可夫模型
计算生物学
贝叶斯概率
化学
蛋白质组
推论
马尔可夫模型
序列(生物学)
肽
马尔可夫链
人工智能
计算机科学
机器学习
生物化学
生物
作者
Bernd Fischer,Volker Röth,Franz F. Roos,Jonas Grossmann,Sacha Baginsky,Peter Widmayer,Wilhelm Gruissem,Joachim M. Buhmann
摘要
De novo sequencing of peptides poses one of the most challenging tasks in data analysis for proteome research. In this paper, a generative hidden Markov model (HMM) of mass spectra for de novo peptide sequencing which constitutes a novel view on how to solve this problem in a Bayesian framework is proposed. Further extensions of the model structure to a graphical model and a factorial HMM to substantially improve the peptide identification results are demonstrated. Inference with the graphical model for de novo peptide sequencing estimates posterior probabilities for amino acids rather than scores for single symbols in the sequence. Our model outperforms state-of-the-art methods for de novo peptide sequencing on a large test set of spectra.
科研通智能强力驱动
Strongly Powered by AbleSci AI