亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助Pluto采纳,获得10
刚刚
wynne313完成签到 ,获得积分10
1秒前
alaa发布了新的文献求助10
1秒前
碗在水中央完成签到 ,获得积分10
10秒前
JamesPei应助alaa采纳,获得10
22秒前
AX完成签到,获得积分10
26秒前
33秒前
40秒前
Rangi发布了新的文献求助10
42秒前
科研通AI2S应助清脆靳采纳,获得10
43秒前
50秒前
DRFANG发布了新的文献求助10
56秒前
任性云朵完成签到 ,获得积分10
58秒前
1分钟前
笑点低忆之完成签到 ,获得积分10
1分钟前
flyinthesky完成签到,获得积分10
1分钟前
Pluto发布了新的文献求助10
1分钟前
落伍的螃蟹完成签到,获得积分10
1分钟前
小蘑菇应助Xinghui采纳,获得10
1分钟前
bibi完成签到,获得积分10
1分钟前
yzizz完成签到 ,获得积分10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
文欣完成签到 ,获得积分0
1分钟前
善学以致用应助jc哥采纳,获得10
1分钟前
1分钟前
yueying完成签到,获得积分10
1分钟前
情怀应助Pluto采纳,获得10
1分钟前
怡然的扬发布了新的文献求助10
1分钟前
脑洞疼应助阿宝溜溜球采纳,获得10
1分钟前
辰昜完成签到,获得积分10
1分钟前
科研通AI6应助Kate采纳,获得10
1分钟前
科研通AI6应助吐个泡泡采纳,获得10
1分钟前
2分钟前
Wangboyang完成签到,获得积分20
2分钟前
2分钟前
samchen完成签到,获得积分10
2分钟前
HY应助Wangboyang采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564906
求助须知:如何正确求助?哪些是违规求助? 4649603
关于积分的说明 14689175
捐赠科研通 4591564
什么是DOI,文献DOI怎么找? 2519229
邀请新用户注册赠送积分活动 1491891
关于科研通互助平台的介绍 1462916