清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
30秒前
深情安青应助zzh采纳,获得10
35秒前
36秒前
48秒前
zzh发布了新的文献求助10
52秒前
无情飞薇完成签到 ,获得积分10
1分钟前
leonzhou发布了新的文献求助10
1分钟前
自然亦凝完成签到,获得积分10
1分钟前
leonzhou完成签到,获得积分10
1分钟前
sino-ft完成签到,获得积分10
1分钟前
1分钟前
平常以云完成签到 ,获得积分10
2分钟前
2分钟前
silence完成签到 ,获得积分10
3分钟前
苏苏苏发布了新的文献求助10
3分钟前
糟糕的翅膀完成签到,获得积分10
4分钟前
优秀棒棒糖完成签到 ,获得积分10
4分钟前
pjxxx完成签到 ,获得积分10
4分钟前
苏苏苏完成签到,获得积分10
4分钟前
arniu2008完成签到,获得积分10
4分钟前
方白秋完成签到,获得积分0
4分钟前
赘婿应助GIA采纳,获得10
6分钟前
苏苏苏发布了新的文献求助30
6分钟前
在水一方应助直率觅松采纳,获得20
6分钟前
lalala完成签到,获得积分10
7分钟前
7分钟前
直率觅松发布了新的文献求助20
7分钟前
香蕉觅云应助eth采纳,获得10
7分钟前
JT发布了新的文献求助30
7分钟前
7分钟前
eth发布了新的文献求助10
8分钟前
JT完成签到,获得积分20
8分钟前
葱葱花卷完成签到 ,获得积分10
8分钟前
来路遥迢完成签到,获得积分10
8分钟前
8分钟前
lsh完成签到,获得积分10
8分钟前
量子星尘发布了新的文献求助10
9分钟前
苏苏苏发布了新的文献求助10
9分钟前
大医仁心完成签到 ,获得积分10
9分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5450193
求助须知:如何正确求助?哪些是违规求助? 4558052
关于积分的说明 14265353
捐赠科研通 4481444
什么是DOI,文献DOI怎么找? 2454845
邀请新用户注册赠送积分活动 1445610
关于科研通互助平台的介绍 1421565