Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
seeyou完成签到 ,获得积分10
刚刚
顾矜应助加油少年采纳,获得10
1秒前
眼睛大花生完成签到,获得积分10
3秒前
3秒前
陈勇杰发布了新的文献求助10
5秒前
跳跃小伙完成签到 ,获得积分10
5秒前
5秒前
6秒前
酷波er应助危机的赛君采纳,获得10
6秒前
7秒前
加油通发布了新的文献求助10
7秒前
7秒前
Stella应助隐形的凡阳采纳,获得10
8秒前
9秒前
10秒前
10秒前
崔译文发布了新的文献求助10
11秒前
scuff发布了新的文献求助10
11秒前
LuckyM发布了新的文献求助10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
Akim应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
传奇3应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
zmz应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
木又应助科研通管家采纳,获得10
13秒前
元谷雪应助科研通管家采纳,获得10
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
13秒前
niNe3YUE应助科研通管家采纳,获得10
13秒前
BowieHuang应助科研通管家采纳,获得10
14秒前
李健应助科研通管家采纳,获得10
14秒前
14秒前
Owen应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
无花果应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557486
求助须知:如何正确求助?哪些是违规求助? 4642578
关于积分的说明 14668531
捐赠科研通 4583986
什么是DOI,文献DOI怎么找? 2514487
邀请新用户注册赠送积分活动 1488830
关于科研通互助平台的介绍 1459454