Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闻屿完成签到,获得积分10
刚刚
假面绅士发布了新的文献求助10
刚刚
科研小白发布了新的文献求助10
1秒前
浅尝离白应助找找看采纳,获得10
1秒前
小马甲应助爱笑的万天采纳,获得10
2秒前
Xu发布了新的文献求助10
2秒前
6秒前
6秒前
8秒前
ZSB发布了新的文献求助10
8秒前
美好斓应助菠菜采纳,获得30
8秒前
lkjh完成签到,获得积分10
8秒前
正在下雨发布了新的文献求助10
9秒前
ding应助liuwei采纳,获得10
9秒前
10秒前
orixero应助幸福大白采纳,获得10
10秒前
善学以致用应助幸福大白采纳,获得10
10秒前
11秒前
Hello应助草木采纳,获得10
11秒前
Vinny完成签到,获得积分10
12秒前
lx发布了新的文献求助10
12秒前
present发布了新的文献求助10
14秒前
dark完成签到,获得积分10
14秒前
15秒前
16秒前
17秒前
16发布了新的文献求助10
17秒前
彭于晏应助科研小白采纳,获得10
20秒前
20秒前
lalala发布了新的文献求助10
21秒前
老实松鼠发布了新的文献求助10
21秒前
NDrDicp完成签到,获得积分10
22秒前
永远的北伦敦完成签到,获得积分10
22秒前
俏皮的煎饼完成签到,获得积分10
23秒前
李理发布了新的文献求助10
23秒前
23秒前
辰冠哲完成签到,获得积分10
24秒前
小聋包发布了新的文献求助10
24秒前
研友_LjDyNZ完成签到,获得积分10
24秒前
25秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792710
关于积分的说明 7803941
捐赠科研通 2448986
什么是DOI,文献DOI怎么找? 1303011
科研通“疑难数据库(出版商)”最低求助积分说明 626717
版权声明 601244