Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
lyx完成签到,获得积分20
1秒前
1秒前
dagongren关注了科研通微信公众号
1秒前
任性的皮皮虾完成签到,获得积分10
1秒前
1秒前
涨涨涨张发布了新的文献求助10
1秒前
蔬菜狗狗发布了新的文献求助20
1秒前
2秒前
orixero应助潼络采纳,获得10
3秒前
科研通AI6应助hj木秀于林采纳,获得10
3秒前
今天看文献了吗完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
曲曲发布了新的文献求助30
4秒前
4秒前
5秒前
上官若男应助科研王采纳,获得10
5秒前
彩虹捕手完成签到,获得积分10
5秒前
仙贝完成签到,获得积分10
5秒前
啦啦啦发布了新的文献求助10
5秒前
hibye发布了新的文献求助10
5秒前
6秒前
死亦生矣完成签到 ,获得积分10
7秒前
魄渊发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
坚果完成签到,获得积分10
8秒前
Lmy发布了新的文献求助10
8秒前
sk发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
华仔应助180198采纳,获得30
10秒前
hongjing发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526107
求助须知:如何正确求助?哪些是违规求助? 4616283
关于积分的说明 14552778
捐赠科研通 4554503
什么是DOI,文献DOI怎么找? 2495919
邀请新用户注册赠送积分活动 1476266
关于科研通互助平台的介绍 1447928