已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助湿地小怪兽采纳,获得10
3秒前
旺旺雪饼完成签到,获得积分20
3秒前
微笑的弼发布了新的文献求助10
3秒前
mellow完成签到,获得积分10
5秒前
5秒前
娟娟完成签到 ,获得积分10
7秒前
lina完成签到 ,获得积分10
8秒前
9秒前
追风筝的少女完成签到 ,获得积分10
9秒前
jiao发布了新的文献求助10
10秒前
10秒前
脑洞疼应助YBR采纳,获得10
10秒前
11秒前
1111发布了新的文献求助10
13秒前
风中故事完成签到,获得积分10
13秒前
lisongbo发布了新的文献求助10
13秒前
18275412695发布了新的文献求助10
17秒前
Sunshine应助kun采纳,获得10
18秒前
一岁一礼完成签到 ,获得积分10
19秒前
小醒笑哈哈完成签到,获得积分10
20秒前
23秒前
25秒前
25秒前
完美世界应助小醒笑哈哈采纳,获得10
27秒前
31秒前
Sunshine给王嗨皮的求助进行了留言
31秒前
YBR发布了新的文献求助10
31秒前
Yyyang发布了新的文献求助10
32秒前
零零柒发布了新的文献求助20
36秒前
婷123完成签到 ,获得积分10
37秒前
37秒前
37秒前
38秒前
等等完成签到,获得积分10
40秒前
王彦霖完成签到 ,获得积分10
41秒前
43秒前
等等发布了新的文献求助10
43秒前
丘比特应助chen采纳,获得10
44秒前
45秒前
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5731434
求助须知:如何正确求助?哪些是违规求助? 5330471
关于积分的说明 15320989
捐赠科研通 4877485
什么是DOI,文献DOI怎么找? 2620351
邀请新用户注册赠送积分活动 1569604
关于科研通互助平台的介绍 1526113