Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俭朴蜜蜂发布了新的文献求助200
刚刚
依夏祭完成签到,获得积分10
1秒前
cc完成签到 ,获得积分10
1秒前
1秒前
天天快乐应助粤十一采纳,获得10
2秒前
YiJin_Wang发布了新的文献求助10
3秒前
乐情发布了新的文献求助20
3秒前
6秒前
wxs发布了新的文献求助10
6秒前
可爱的函函应助酷酷巧蟹采纳,获得10
7秒前
7秒前
blablawindy发布了新的文献求助10
8秒前
科研小白发布了新的文献求助10
9秒前
李爱国应助嘿咻采纳,获得10
9秒前
9秒前
9秒前
Steven发布了新的文献求助10
10秒前
10秒前
迟有朝完成签到,获得积分10
12秒前
崔佳慧发布了新的文献求助10
12秒前
粤十一完成签到,获得积分10
13秒前
14秒前
angelinazh完成签到,获得积分10
14秒前
粤十一发布了新的文献求助10
15秒前
15秒前
桐桐应助pura卷卷采纳,获得10
15秒前
16秒前
无花果应助端庄的如花采纳,获得10
17秒前
Hello应助咸鱼咸采纳,获得10
18秒前
张铁柱完成签到,获得积分10
18秒前
天天快乐应助崔佳慧采纳,获得10
18秒前
卢卢完成签到,获得积分10
20秒前
foreverchoi发布了新的文献求助10
20秒前
酷酷巧蟹发布了新的文献求助10
20秒前
20秒前
所所应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得30
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206