Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大圣发布了新的文献求助10
刚刚
千xi发布了新的文献求助30
刚刚
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
乐空思应助ernest采纳,获得10
3秒前
阿巴阿巴完成签到 ,获得积分20
4秒前
4秒前
复杂的凌柏完成签到 ,获得积分10
4秒前
干净的沛蓝完成签到,获得积分10
5秒前
5秒前
7秒前
wuya发布了新的文献求助10
7秒前
阿千完成签到,获得积分10
7秒前
骆風发布了新的文献求助10
8秒前
12138发布了新的文献求助10
8秒前
8秒前
lhnsisi完成签到,获得积分10
9秒前
schuang完成签到,获得积分0
9秒前
别在海边打瞌睡完成签到 ,获得积分20
9秒前
典雅的念真完成签到,获得积分10
10秒前
ZYF完成签到,获得积分20
10秒前
阿千发布了新的文献求助10
10秒前
11秒前
Wudifairy完成签到,获得积分10
12秒前
自由宛筠发布了新的文献求助10
12秒前
13秒前
15秒前
吴宇杰完成签到,获得积分20
16秒前
YYYYZ发布了新的文献求助10
16秒前
ccc完成签到 ,获得积分10
17秒前
17秒前
在水一方应助自由宛筠采纳,获得10
18秒前
18秒前
文献狗完成签到,获得积分10
19秒前
打打应助sunshine采纳,获得10
20秒前
wuya完成签到,获得积分20
20秒前
共享精神应助Mr采纳,获得10
21秒前
优美紫槐应助122采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604172
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857380
捐赠科研通 4697016
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851