Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助史超采纳,获得10
刚刚
完美世界应助雾1206采纳,获得10
1秒前
Li发布了新的文献求助40
1秒前
leo完成签到,获得积分10
2秒前
阳光的小笼包完成签到,获得积分10
2秒前
2秒前
Hhh发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
端庄的如花完成签到 ,获得积分10
4秒前
5秒前
7秒前
Wnn完成签到 ,获得积分10
8秒前
清脆糖豆发布了新的文献求助10
9秒前
kexian_ning给kexian_ning的求助进行了留言
10秒前
11秒前
12秒前
Ava应助糖糖钰采纳,获得10
13秒前
pluto应助yjf,123采纳,获得10
15秒前
月牙儿发布了新的文献求助10
15秒前
小蘑菇应助priss111采纳,获得10
16秒前
啦啦啦发布了新的文献求助10
16秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
天苍野茫完成签到,获得积分10
18秒前
cenghao发布了新的文献求助10
21秒前
小二郎应助Luuu采纳,获得10
21秒前
CWY发布了新的文献求助10
22秒前
养了个豆豆完成签到,获得积分10
24秒前
重要寄松完成签到,获得积分10
25秒前
25秒前
25秒前
25秒前
六斤完成签到 ,获得积分20
26秒前
无花果应助欣喜的人龙采纳,获得10
27秒前
无花果应助ss采纳,获得30
28秒前
糖糖钰发布了新的文献求助10
29秒前
复杂的盛男完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
Advanced Memory Technology: Functional Materials and Devices 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5675174
求助须知:如何正确求助?哪些是违规求助? 4943579
关于积分的说明 15151713
捐赠科研通 4834349
什么是DOI,文献DOI怎么找? 2589438
邀请新用户注册赠送积分活动 1543035
关于科研通互助平台的介绍 1501031