Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快寒香发布了新的文献求助10
刚刚
1秒前
sjyu1985完成签到,获得积分10
1秒前
天才幸运鱼完成签到,获得积分10
1秒前
郝老头完成签到,获得积分10
2秒前
3秒前
yexing完成签到,获得积分10
3秒前
原野完成签到,获得积分10
4秒前
赖建琛完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
你好完成签到,获得积分10
6秒前
sallyshe完成签到,获得积分10
6秒前
安静的乐松完成签到,获得积分10
6秒前
zhang完成签到,获得积分10
6秒前
有我ID随机吗完成签到,获得积分10
6秒前
皓月当空完成签到,获得积分10
6秒前
高贵觅山完成签到,获得积分10
7秒前
Erizer完成签到,获得积分10
7秒前
双楠应助怡然云朵采纳,获得10
7秒前
司徒涟妖完成签到,获得积分10
7秒前
Yola完成签到,获得积分10
8秒前
情怀应助亮仔采纳,获得10
8秒前
英俊的铭应助普外科老白采纳,获得10
8秒前
ohno耶耶耶完成签到,获得积分10
8秒前
和和完成签到,获得积分10
8秒前
小啊刘呀发布了新的文献求助10
8秒前
9秒前
10秒前
鸣笛应助科研通管家采纳,获得20
10秒前
wind2631完成签到,获得积分10
10秒前
Chanyl发布了新的文献求助10
11秒前
哈哈完成签到,获得积分10
11秒前
江你一军完成签到,获得积分10
12秒前
Tomin完成签到,获得积分0
12秒前
夏天就是桃子味完成签到,获得积分10
13秒前
13秒前
小马儿完成签到 ,获得积分10
14秒前
俗话完成签到,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950021
求助须知:如何正确求助?哪些是违规求助? 3495367
关于积分的说明 11076612
捐赠科研通 3225910
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867609
科研通“疑难数据库(出版商)”最低求助积分说明 800855