Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊发布了新的文献求助10
2秒前
顾矜应助张梦迪采纳,获得10
2秒前
2秒前
2秒前
小南发布了新的文献求助10
2秒前
3秒前
3秒前
含蓄的鹤发布了新的文献求助20
4秒前
yuyuyuan完成签到,获得积分10
5秒前
爆米花应助木心长采纳,获得10
5秒前
娜行完成签到 ,获得积分10
5秒前
caohuijun发布了新的文献求助10
6秒前
Akim应助JasonSun采纳,获得30
8秒前
12秒前
孤独梦安完成签到 ,获得积分10
12秒前
英俊完成签到,获得积分10
12秒前
乐乐应助风格化橙采纳,获得10
13秒前
喜悦发卡完成签到,获得积分10
14秒前
活力的泥猴桃完成签到 ,获得积分10
15秒前
16秒前
xinxinwen完成签到,获得积分10
16秒前
17秒前
17秒前
EMMA发布了新的文献求助10
18秒前
Cc关闭了Cc文献求助
18秒前
TTRO完成签到,获得积分10
18秒前
m_seek完成签到,获得积分10
19秒前
木心长发布了新的文献求助10
20秒前
20秒前
土二给土二的求助进行了留言
20秒前
21秒前
在水一方应助十五采纳,获得10
23秒前
Yzh完成签到,获得积分10
23秒前
smile发布了新的文献求助10
24秒前
Michael Zhang完成签到 ,获得积分10
24秒前
邓年念发布了新的文献求助10
25秒前
云那边的山发布了新的文献求助300
26秒前
英姑应助EMMA采纳,获得10
27秒前
浮游应助xxx采纳,获得10
28秒前
深情安青应助小王采纳,获得30
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299457
求助须知:如何正确求助?哪些是违规求助? 4447594
关于积分的说明 13843316
捐赠科研通 4333203
什么是DOI,文献DOI怎么找? 2378632
邀请新用户注册赠送积分活动 1373923
关于科研通互助平台的介绍 1339452