亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing different venous thromboembolism risk assessment machine learning models in Chinese patients

接收机工作特性 医学 尤登J统计 逻辑回归 随机森林 静脉血栓栓塞 预测建模 人工智能 急诊医学 机器学习 外科 内科学 计算机科学 血栓形成
作者
Xin Wang,Yuqing Yang,Si‐Hua Liu,Xinyu Hong,Xuefeng Sun,Juhong Shi
出处
期刊:Journal of Evaluation in Clinical Practice [Wiley]
卷期号:26 (1): 26-34 被引量:32
标识
DOI:10.1111/jep.13324
摘要

Abstract Objective Venous thromboembolism (VTE) is a fatal complication and the most common preventable cause of death in hospitals. The risk‐to‐benefit ratio of thromboprophylaxis depends on the performance of the risk assessment model. A linear model, the Padua model, is recommended for medical inpatients in the United States but is not suitable for Chinese inpatients due to differences in race and disease spectrum. Currently, machine learning (ML) methods show advantages in modeling complex data patterns and have been applied to clinical data analysis. This study aimed to build VTE risk assessment ML models among Chinese inpatients and compare the predictive validity of the ML models with that of the Padua model. Methods We used 376 patients, including 188 patients with VTE, to build a model and then evaluate the predictive validity of the model in a consecutive clinical dataset from Peking Union Medical College Hospital. Nine widely used ML methods were trained on the model derivation set and then compared with the Padua model. Results Among the nine ML methods, random forest (RF), boosting‐based methods, and logistic regression achieved a higher specificity, Youden index, positive predictive value, and area under the receiver operating characteristic curve than the Padua model on both the test and clinical validation sets. However, their sensitivities were inferior to that of the Padua model. Combined with the receiver operating characteristic curve, RF, as the best performing model, maintained high specificity with relatively better sensitivity and captured VTE patients' patterns more precisely. Conclusions Advances in ML technology provide powerful tools for medical data analysis, and choosing models conforming to the disease pattern would achieve good performance. Popular ML models do not surpass the Padua model on all indicators of validity, and the drawback of low sensitivity should be improved upon in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿里发布了新的文献求助10
5秒前
23秒前
hhuajw完成签到,获得积分10
29秒前
purple完成签到 ,获得积分10
54秒前
夜白应助满意初蓝采纳,获得20
1分钟前
1分钟前
1分钟前
1分钟前
独指蜗牛完成签到 ,获得积分10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
水牛完成签到,获得积分10
2分钟前
2分钟前
迷路千琴发布了新的文献求助10
2分钟前
科研通AI6应助RC采纳,获得10
2分钟前
2分钟前
zxcvvbb1001完成签到 ,获得积分10
2分钟前
2分钟前
h0jian09完成签到,获得积分10
2分钟前
MchemG完成签到,获得积分0
2分钟前
2分钟前
大熊完成签到 ,获得积分10
2分钟前
迷路千琴完成签到,获得积分10
3分钟前
3分钟前
3分钟前
大树努力要毕业完成签到,获得积分10
3分钟前
3分钟前
bkagyin应助Yashyi采纳,获得10
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
Yashyi发布了新的文献求助10
4分钟前
4分钟前
遇上就这样吧应助Jack80采纳,获得50
4分钟前
4分钟前
nojego完成签到,获得积分10
4分钟前
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590522
求助须知:如何正确求助?哪些是违规求助? 4674802
关于积分的说明 14795307
捐赠科研通 4632939
什么是DOI,文献DOI怎么找? 2532808
邀请新用户注册赠送积分活动 1501315
关于科研通互助平台的介绍 1468687