Bisection and Exact Algorithms Based on the Lagrangian Dual for a Single-Constrained Shortest Path Problem

计算机科学 对偶(语法数字) 算法 最短路径问题 路径(计算) 拉格朗日 数学优化 理论计算机科学 数学 图形 计算机网络 应用数学 文学类 艺术
作者
Caixia Kou,Hu Dedong,Jianhua Yuan,Wenbao Ai
出处
期刊:IEEE ACM Transactions on Networking [Institute of Electrical and Electronics Engineers]
卷期号:28 (1): 224-233 被引量:4
标识
DOI:10.1109/tnet.2019.2955451
摘要

We propose two new algorithms called BiLAD and ExactBiLAD for the well-known Single-Constrained Shortest Path (SCSP) problem. It is a fundamental problem in quality-of-service (QoS) routing, where one seeks a source-destination path with the least cost satisfying a delay QoS constraint in a network. As pointed out by Juttner et al. , there is no widely accepted algorithm with polynomial time to the SCSP problem because the SCSP problem is NP-hard. The remarkable feature of BiLAD is that it ensures that the length of iteratively updated angle interval is shrunk at least at a constant ratio. With the help of this feature, we prove its polynomial time complexity. To the best of our knowledge, this is the first time that the polynomial time complexity is proved in details. The numerical results show that, in most QoS routing test instances, the performance of BiLAD is close to their primal optimal solutions. The proposed modified Dijkstra procedure, whose complexity is the same as that of the Dijkstra algorithm, also accelerates BiLAD. In the second part of the paper, based on the information obtained by BiLAD, we design an exact algorithm–ExactBiLAD, in which an optimal solution to the SCSP problem is finally obtained by scanning the steadily reduced optimal-path-candidate triangle area. The simulation results indicate that ExactBiLAD needs only a dozen times of executing the modified Dijkstra algorithm regardless of the network size or the average node degree. Distinguished from many other exact algorithms, ExactBiLAD has a satisfactory performance in the practical computation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vegetable完成签到,获得积分10
刚刚
1秒前
www发布了新的文献求助10
2秒前
华仔应助Vv采纳,获得10
2秒前
似锦发布了新的文献求助20
2秒前
香蕉觅云应助唠叨的又菡采纳,获得10
4秒前
蔡以静完成签到,获得积分10
5秒前
承一发布了新的文献求助10
5秒前
科研科发布了新的文献求助30
5秒前
科研通AI6应助MC番薯采纳,获得10
6秒前
七里香发布了新的文献求助10
6秒前
Dr.Wang发布了新的文献求助10
6秒前
6秒前
miaomiao完成签到,获得积分10
7秒前
魁梧的曼易完成签到,获得积分10
7秒前
www完成签到 ,获得积分10
9秒前
lin发布了新的文献求助60
10秒前
香蕉觅云应助Dr.Wang采纳,获得10
11秒前
11秒前
14秒前
21_xxrr完成签到,获得积分10
16秒前
和谐青柏发布了新的文献求助10
16秒前
吴先生完成签到 ,获得积分10
17秒前
17秒前
hsyssb发布了新的文献求助150
18秒前
18秒前
langping完成签到,获得积分10
18秒前
18秒前
侯侯完成签到,获得积分10
19秒前
21秒前
Bminor完成签到,获得积分10
21秒前
22秒前
22秒前
吴先生关注了科研通微信公众号
22秒前
gzwhh发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
23秒前
czz发布了新的文献求助10
23秒前
Kongkong发布了新的文献求助10
23秒前
25秒前
科研通AI6应助fengmian采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648573
求助须知:如何正确求助?哪些是违规求助? 4775700
关于积分的说明 15044558
捐赠科研通 4807505
什么是DOI,文献DOI怎么找? 2570811
邀请新用户注册赠送积分活动 1527652
关于科研通互助平台的介绍 1486501