Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems

计算机科学 分类学(生物学) 人工智能 机器学习 知识表示与推理 主动学习(机器学习) 领域(数学) 数学 植物 生物 纯数学
作者
Laura von Rueden,Sebastian Mayer,Katharina Beckh,Bogdan Georgiev,Sven Giesselbach,Raoul Heese,Birgit Kirsch,Michał Walczak,Julius Pfrommer,Annika Pick,Rajkumar Ramamurthy,Jochen Garcke,Christian Bauckhage,Jannis Schuecker
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:609
标识
DOI:10.1109/tkde.2021.3079836
摘要

Despite its great success, machine learning can have its limits when dealing with insufficient training data. A potential solution is the additional integration of prior knowledge into the training process which leads to the notion of informed machine learning. In this paper, we present a structured overview of various approaches in this field. We provide a definition and propose a concept for informed machine learning which illustrates its building blocks and distinguishes it from conventional machine learning. We introduce a taxonomy that serves as a classification framework for informed machine learning approaches. It considers the source of knowledge, its representation, and its integration into the machine learning pipeline. Based on this taxonomy, we survey related research and describe how different knowledge representations such as algebraic equations, logic rules, or simulation results can be used in learning systems. This evaluation of numerous papers on the basis of our taxonomy uncovers key methods in the field of informed machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒的皮卡丘完成签到,获得积分10
刚刚
1秒前
铃旅完成签到,获得积分10
1秒前
mao发布了新的文献求助10
1秒前
在水一方应助周哈哈采纳,获得10
1秒前
1秒前
1秒前
CodeCraft应助SigRosa采纳,获得10
1秒前
Darling完成签到,获得积分10
2秒前
Su发布了新的文献求助10
2秒前
2秒前
春树暮云发布了新的文献求助10
3秒前
3秒前
小黑猴ps完成签到,获得积分10
3秒前
3秒前
4秒前
平常墨镜发布了新的文献求助10
4秒前
4秒前
李爱国应助乃思采纳,获得10
5秒前
天天快乐应助中和皇极采纳,获得10
5秒前
Jm发布了新的文献求助10
5秒前
6秒前
6秒前
win发布了新的文献求助10
7秒前
德行天下发布了新的文献求助30
7秒前
7秒前
发财达人发布了新的文献求助10
7秒前
幸福的含雁应助猫猫啸日采纳,获得20
8秒前
风中觅海发布了新的文献求助10
8秒前
8秒前
HY发布了新的文献求助10
8秒前
安静的幻竹应助wk采纳,获得10
8秒前
8秒前
8秒前
Stella应助春树暮云采纳,获得10
9秒前
FashionBoy应助汤飞柏采纳,获得10
9秒前
popvich完成签到,获得积分0
9秒前
9秒前
汤姆利伯发布了新的文献求助10
9秒前
嘿嘿发布了新的文献求助10
10秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588259
求助须知:如何正确求助?哪些是违规求助? 4671299
关于积分的说明 14786793
捐赠科研通 4624766
什么是DOI,文献DOI怎么找? 2531723
邀请新用户注册赠送积分活动 1500308
关于科研通互助平台的介绍 1468262