水溶液中的金属离子
化学工程
选择性吸附
化学
沸石咪唑盐骨架
配体(生物化学)
吸附
小型商用车
作者
Hussein Rasool Abid,Zana Hassan Rada,Yuan Li,Hussein A. Mohammed,Yuan Wang,Shaobin Wang,Hamidreza Arandiyan,Xiaoyao Tan,Shaomin Liu
出处
期刊:RSC Advances
[The Royal Society of Chemistry]
日期:2020-02-24
卷期号:10 (14): 8130-8139
被引量:15
摘要
Aluminum trimesate-based MOF (MIL-96-(Al)) has attracted intense attention due to its high chemical stability and strong CO2 adsorption capacity. In this study, CO2 capture and selectivity of MIL-96-Al was further improved by the coordination of the second metal Ca. To this end, a series of MIL-96(Al)–Ca were hydrothermally synthesised by a one-pot method, varying the molar ratio of Ca2+/Al3+. It is shown that the variation of Ca2+/Al3+ ratio results in significant changes in crystal shape and size. The shape varies from the hexagonal rods capped in the ends by a hexagonal pyramid in MIL-96(Al) without Ca to the thin hexagonal disks in MIL-96(Al)–Ca4 (the highest Ca content). Adsorption studies reveal that the CO2 adsorption on MIL-96(Al)–Ca1 and MIL-96(Al)–Ca2 at pressures up to 950 kPa is vastly improved due to the enhanced pore volumes compared to MIL-96(Al). The CO2 uptake on these materials measured in the above sequence is 10.22, 9.38 and 8.09 mmol g−1, respectively. However, the CO2 uptake reduces to 5.26 mmol g−1 on MIL-96(Al)–Ca4. Compared with MIL-96(Al)–Ca1, the N2 adsorption in MIL-96(Al)–Ca4 is significantly reduced by 90% at similar operational conditions. At 100 and 28.8 kPa, the selectivity of MIL-96(Al)–Ca4 to CO2/N2 reaches up to 67 and 841.42, respectively, which is equivalent to 5 and 26 times the selectivity of MIL-96(Al). The present findings highlight that MIL-96(Al) with second metal Ca coordination is a potential candidate as an alternative CO2 adsorbent for practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI