Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network

过度拟合 脑电图 癫痫发作 神经科学 计算机科学 模式识别(心理学) 人工智能 语音识别 心理学 机器学习 人工神经网络
作者
Yang Li,Yu Liu,Weigang Cui,Yuzhu Guo,Hui Huang,Zhongyi Hu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 782-794 被引量:199
标识
DOI:10.1109/tnsre.2020.2973434
摘要

The intelligent recognition of epileptic electro-encephalogram (EEG) signals is a valuable tool for the epileptic seizure detection. Recent deep learning models fail to fully consider both spectral and temporal domain representations simultaneously, which may lead to omitting the nonstationary or nonlinear property in epileptic EEGs and further produce a suboptimal recognition performance consequently. In this paper, an end-to-end EEG seizure detection framework is proposed by using a novel channel-embedding spectral-temporal squeeze-and-excitation network (CE-stSENet) with a maximum mean discrepancy-based information maximizing loss. Specifically, the CE-stSENet firstly integrates both multi-level spectral and multi-scale temporal analysis simultaneously. Hierarchical multi-domain representations are then captured in a unified manner with a variant of squeeze-and-excitation block. The classification net is finally implemented for epileptic EEG recognition based on features extracted in previous subnetworks. Particularly, to address the fact that the scarcity of seizure events results in finite data distribution and the severe overfitting problem in seizure detection, the CE-stSENet is coordinated with a maximum mean discrepancy-based information maximizing loss for mitigating the overfitting problem. Competitive experimental results on three EEG datasets against the state-of-the-art methods demonstrate the effectiveness of the proposed framework in recognizing epileptic EEGs, indicating its powerful capability in the automatic seizure detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenxi完成签到,获得积分20
2秒前
2秒前
3秒前
6秒前
Zachary完成签到,获得积分10
6秒前
6秒前
旋转木马9个完成签到 ,获得积分10
9秒前
9秒前
找不到头大完成签到,获得积分20
10秒前
11秒前
13秒前
没食子酸完成签到,获得积分10
13秒前
14秒前
无极微光应助Jia采纳,获得20
15秒前
胡杨树2006完成签到,获得积分10
16秒前
fujun0095发布了新的文献求助10
17秒前
17秒前
17秒前
wxy发布了新的文献求助10
18秒前
zhaoyue完成签到 ,获得积分10
20秒前
科研狗的春天完成签到 ,获得积分10
21秒前
筷子夹豆腐脑完成签到,获得积分10
22秒前
22秒前
Jenny发布了新的文献求助10
23秒前
Estrella发布了新的文献求助10
23秒前
dandna完成签到 ,获得积分10
23秒前
晴心完成签到,获得积分10
27秒前
苹果鱼完成签到,获得积分10
28秒前
DD完成签到,获得积分10
28秒前
张二田发布了新的文献求助10
29秒前
tracer526发布了新的文献求助10
29秒前
萨尔莫斯发布了新的文献求助10
30秒前
35秒前
王佳俊完成签到,获得积分10
36秒前
36秒前
37秒前
Owen应助辜卅采纳,获得10
39秒前
39秒前
ding应助wxy采纳,获得10
45秒前
科研通AI6应助fujun0095采纳,获得10
51秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560383
求助须知:如何正确求助?哪些是违规求助? 4645536
关于积分的说明 14675482
捐赠科研通 4586681
什么是DOI,文献DOI怎么找? 2516518
邀请新用户注册赠送积分活动 1490121
关于科研通互助平台的介绍 1460951