Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network

过度拟合 脑电图 癫痫发作 神经科学 计算机科学 模式识别(心理学) 人工智能 语音识别 心理学 机器学习 人工神经网络
作者
Yang Li,Yu Liu,Weigang Cui,Yuzhu Guo,Hui Huang,Zhongyi Hu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 782-794 被引量:199
标识
DOI:10.1109/tnsre.2020.2973434
摘要

The intelligent recognition of epileptic electro-encephalogram (EEG) signals is a valuable tool for the epileptic seizure detection. Recent deep learning models fail to fully consider both spectral and temporal domain representations simultaneously, which may lead to omitting the nonstationary or nonlinear property in epileptic EEGs and further produce a suboptimal recognition performance consequently. In this paper, an end-to-end EEG seizure detection framework is proposed by using a novel channel-embedding spectral-temporal squeeze-and-excitation network (CE-stSENet) with a maximum mean discrepancy-based information maximizing loss. Specifically, the CE-stSENet firstly integrates both multi-level spectral and multi-scale temporal analysis simultaneously. Hierarchical multi-domain representations are then captured in a unified manner with a variant of squeeze-and-excitation block. The classification net is finally implemented for epileptic EEG recognition based on features extracted in previous subnetworks. Particularly, to address the fact that the scarcity of seizure events results in finite data distribution and the severe overfitting problem in seizure detection, the CE-stSENet is coordinated with a maximum mean discrepancy-based information maximizing loss for mitigating the overfitting problem. Competitive experimental results on three EEG datasets against the state-of-the-art methods demonstrate the effectiveness of the proposed framework in recognizing epileptic EEGs, indicating its powerful capability in the automatic seizure detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霞霞子完成签到 ,获得积分10
刚刚
caisongliang完成签到,获得积分10
刚刚
完美世界应助优雅的帅哥采纳,获得10
1秒前
烦烦烦完成签到,获得积分10
1秒前
luumuyu关注了科研通微信公众号
3秒前
TITANIUMJ关注了科研通微信公众号
4秒前
bb发布了新的文献求助10
5秒前
6秒前
6秒前
DeepLearning发布了新的文献求助10
8秒前
changping应助Maqian采纳,获得10
9秒前
syalonyui完成签到,获得积分10
9秒前
桐桐应助婷婷的大宝剑采纳,获得10
9秒前
量子星尘发布了新的文献求助10
10秒前
派大星完成签到 ,获得积分10
11秒前
仙峰水龙发布了新的文献求助10
11秒前
杨廷友发布了新的文献求助10
12秒前
12秒前
科研通AI5应助史杜旦腾采纳,获得10
12秒前
今后应助QIQ采纳,获得10
12秒前
h_hellow完成签到,获得积分10
12秒前
小海发布了新的文献求助10
13秒前
悦耳如彤完成签到,获得积分10
13秒前
不想晚睡给不想晚睡的求助进行了留言
14秒前
16秒前
kuku上岸给kuku上岸的求助进行了留言
16秒前
Sean完成签到,获得积分10
16秒前
冷酷丹翠发布了新的文献求助10
17秒前
悦耳如彤发布了新的文献求助10
17秒前
bkagyin应助早早采纳,获得10
17秒前
lym完成签到,获得积分10
18秒前
酷波er应助辛菜头采纳,获得30
18秒前
19秒前
TTDD完成签到 ,获得积分10
20秒前
20秒前
小闲发布了新的文献求助10
20秒前
22秒前
七七七七完成签到 ,获得积分10
22秒前
TITANIUMJ发布了新的文献求助10
24秒前
Ava应助wada酱采纳,获得10
25秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125878
求助须知:如何正确求助?哪些是违规求助? 4329554
关于积分的说明 13491294
捐赠科研通 4164468
什么是DOI,文献DOI怎么找? 2282962
邀请新用户注册赠送积分活动 1284016
关于科研通互助平台的介绍 1223406