亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Epileptic Seizure Detection in EEG Signals Using a Unified Temporal-Spectral Squeeze-and-Excitation Network

过度拟合 脑电图 癫痫发作 神经科学 计算机科学 模式识别(心理学) 人工智能 语音识别 心理学 机器学习 人工神经网络
作者
Yang Li,Yu Liu,Weigang Cui,Yuzhu Guo,Hui Huang,Zhongyi Hu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:28 (4): 782-794 被引量:199
标识
DOI:10.1109/tnsre.2020.2973434
摘要

The intelligent recognition of epileptic electro-encephalogram (EEG) signals is a valuable tool for the epileptic seizure detection. Recent deep learning models fail to fully consider both spectral and temporal domain representations simultaneously, which may lead to omitting the nonstationary or nonlinear property in epileptic EEGs and further produce a suboptimal recognition performance consequently. In this paper, an end-to-end EEG seizure detection framework is proposed by using a novel channel-embedding spectral-temporal squeeze-and-excitation network (CE-stSENet) with a maximum mean discrepancy-based information maximizing loss. Specifically, the CE-stSENet firstly integrates both multi-level spectral and multi-scale temporal analysis simultaneously. Hierarchical multi-domain representations are then captured in a unified manner with a variant of squeeze-and-excitation block. The classification net is finally implemented for epileptic EEG recognition based on features extracted in previous subnetworks. Particularly, to address the fact that the scarcity of seizure events results in finite data distribution and the severe overfitting problem in seizure detection, the CE-stSENet is coordinated with a maximum mean discrepancy-based information maximizing loss for mitigating the overfitting problem. Competitive experimental results on three EEG datasets against the state-of-the-art methods demonstrate the effectiveness of the proposed framework in recognizing epileptic EEGs, indicating its powerful capability in the automatic seizure detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zhongbo发布了新的文献求助10
2秒前
缓慢冬莲发布了新的文献求助10
3秒前
5秒前
guyutang完成签到,获得积分10
7秒前
小马完成签到,获得积分10
7秒前
旧城发布了新的文献求助10
10秒前
12秒前
淮安石河子完成签到 ,获得积分10
16秒前
17秒前
闵凝竹完成签到 ,获得积分0
21秒前
23秒前
24秒前
轻松的飞阳完成签到,获得积分10
27秒前
29秒前
得唔闻完成签到 ,获得积分10
31秒前
充电宝应助LIAN采纳,获得10
33秒前
科目三应助孟益帆采纳,获得10
34秒前
完美的jia发布了新的文献求助10
36秒前
春风完成签到 ,获得积分10
40秒前
49秒前
无极微光应助lluu采纳,获得20
52秒前
52秒前
54秒前
55秒前
欢呼半山完成签到 ,获得积分10
55秒前
1分钟前
hll发布了新的文献求助10
1分钟前
1分钟前
1分钟前
田子廉发布了新的文献求助10
1分钟前
z123456发布了新的文献求助10
1分钟前
1分钟前
zhongbo发布了新的文献求助10
1分钟前
充电宝应助z123456采纳,获得10
1分钟前
田子廉完成签到,获得积分20
1分钟前
1分钟前
谭谭谭发布了新的文献求助80
1分钟前
1分钟前
科研通AI6应助hll采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564848
求助须知:如何正确求助?哪些是违规求助? 4649537
关于积分的说明 14689066
捐赠科研通 4591517
什么是DOI,文献DOI怎么找? 2519183
邀请新用户注册赠送积分活动 1491843
关于科研通互助平台的介绍 1462872