过度拟合
脑电图
癫痫发作
神经科学
计算机科学
模式识别(心理学)
人工智能
语音识别
心理学
机器学习
人工神经网络
作者
Yang Li,Yu Liu,Weigang Cui,Yuzhu Guo,Hui Huang,Zhongyi Hu
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering
[Institute of Electrical and Electronics Engineers]
日期:2020-02-12
卷期号:28 (4): 782-794
被引量:199
标识
DOI:10.1109/tnsre.2020.2973434
摘要
The intelligent recognition of epileptic electro-encephalogram (EEG) signals is a valuable tool for the epileptic seizure detection. Recent deep learning models fail to fully consider both spectral and temporal domain representations simultaneously, which may lead to omitting the nonstationary or nonlinear property in epileptic EEGs and further produce a suboptimal recognition performance consequently. In this paper, an end-to-end EEG seizure detection framework is proposed by using a novel channel-embedding spectral-temporal squeeze-and-excitation network (CE-stSENet) with a maximum mean discrepancy-based information maximizing loss. Specifically, the CE-stSENet firstly integrates both multi-level spectral and multi-scale temporal analysis simultaneously. Hierarchical multi-domain representations are then captured in a unified manner with a variant of squeeze-and-excitation block. The classification net is finally implemented for epileptic EEG recognition based on features extracted in previous subnetworks. Particularly, to address the fact that the scarcity of seizure events results in finite data distribution and the severe overfitting problem in seizure detection, the CE-stSENet is coordinated with a maximum mean discrepancy-based information maximizing loss for mitigating the overfitting problem. Competitive experimental results on three EEG datasets against the state-of-the-art methods demonstrate the effectiveness of the proposed framework in recognizing epileptic EEGs, indicating its powerful capability in the automatic seizure detection.
科研通智能强力驱动
Strongly Powered by AbleSci AI