材料科学
伤口愈合
化学工程
膜
微流控
纳米技术
乳状液
聚合物
粘附
生物污染
慢性伤口
生物医学工程
化学
复合材料
医学
外科
工程类
生物化学
作者
Xiaoxue Yao,Guoshuai Zhu,Pingan Zhu,Jing Ma,Wenwen Chen,Zhou Liu,Tiantian Kong
标识
DOI:10.1002/adfm.201909389
摘要
Abstract Bacterial adhesion and colonization can result in chronic non‐healing wounds. Current hydrophilic wound dressings can release antibacterial agents into the wound exudate, but may result in overhydrated wounds, bacterial overgrowth, and even tissue maceration. Hydrophobic dressings are anti‐fouling, though ineffective to encapsulate and release bactericidal agents. Combining the advantages of hydrophilic and hydrophobic dressings seems difficult, until the development of superwettability surfaces offers an opportunity for omniphobic dressings from intrinsic hydrophilic polymers. Herein, omniphobic porous hydrogel wound dressings loaded with a zinc imidazolate framework 8 (ZIF‐8) are fabricated by a microfluidic‐emulsion‐templating method. The fabricated porous hydrogel membrane with its reentrant architecture is repellent to blood and body fluids, though intrinsically hydrophilic. This unique combination not only reduces the adhesion of harmful microbes, but also enables the encapsulation and release of antibacterial ingredients to wounded sites from hydrophilic polymer networks. As such, the omniphobic metal‐organic frameworks (MOFs)@hydrogel porous wound dressing can inhibit bacteria invasion and enable the controlled release of the bactericidal, anti‐inflammatory, and nontoxic zinc ions. Furthermore, in vivo study of infected full‐thickness skin defect models demonstrates that the dressing also accelerates wound closure by promoting angiogenesis and collagen deposition. Therefore, the omniphobic MOFs@hydrogel porous wound dressings are potentially useful for clinical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI