Successive electrochemical conversion reaction to understand the performance of aqueous Zn/MnO2 batteries with Mn2+ additive

材料科学 电解质 电化学 水溶液 溶解 氢氧化物 电池(电) 化学工程 无机化学 三元运算 电极 冶金 化学 功率(物理) 程序设计语言 物理化学 工程类 物理 量子力学 计算机科学
作者
Hong Chen,Shaobo Cai,Y. Wu,W. Wang,Maowen Xu,Shu‐Juan Bao
出处
期刊:Materials Today Energy [Elsevier]
卷期号:20: 100646-100646 被引量:66
标识
DOI:10.1016/j.mtener.2021.100646
摘要

Rechargeable aqueous zinc-manganese oxide (Zn/MnO2) batteries using Mn2+ as the electrolyte additive have recently attracted remarkable attention owing to their largely improved cycling stability. Herein, we find that the Zn/MnO2 batteries with Mn2+ additive still exhibit rapid capacity fading when cycling between 0.8 and 1.6 V vs. Zn/Zn2+, its improved performance is only observed when charged to a higher slope region (>1.6 V), which suggests that the improved performance of Mn2+ added Zn/MnO2 is not caused by suppressing the dissolution of MnO2 cathode. Inspired by this discovery, successive electrochemcial conversion reactions are scrutinized and proved for evaluating the performance of the Zn/MnO2 batteries after using Mn2+ as the electrolyte additive. By adding a certain amount of Mn2+ into the electrolyte, the battery can improve the capacity and cycling abilitily through converted electrodepostion of Mn2+. Specifically, the zinc sulfate hydroxide hydrate (Zn4SO4·(OH)6·4H2O) large-flake can initiate the generation of zinc vernadite nanosheets (ZnxMnO(OH)y) during the charge process (around 1.5 V vs. Zn/Zn2+), and then the zinc vernadite nanosheets can reversibly re-back to Zn4SO4·(OH)6·4H2O during the discharge process. Importantly, part of zinc vernadite nanosheets irreversibly transform into tunnel-like MnO2 nanocrystalline material when charging higher than 1.6 V vs. Zn/Zn2+, which can improve the specific capacity of Zn/MnO2 batteries in subsequent cycles and then make the Zn/MnO2 batteries exhibit excellent cycles stability. Finally, through a special zinc/carbon nanotube (Zn/CNT) battery, this successive electrochemcial conversion reactions are further verified.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诛夜完成签到,获得积分10
3秒前
wanci应助L112233采纳,获得10
4秒前
6秒前
自不惊扰完成签到,获得积分10
9秒前
huo应助小王同学搞学术采纳,获得10
9秒前
10秒前
10秒前
jjjjjj发布了新的文献求助10
10秒前
12秒前
姜彦乔发布了新的文献求助10
13秒前
简单点发布了新的文献求助10
13秒前
小芳应助虞无声采纳,获得10
15秒前
16秒前
guoleileity完成签到,获得积分10
17秒前
之组长了发布了新的文献求助30
17秒前
充电宝应助贺知书采纳,获得10
17秒前
简单点完成签到,获得积分10
18秒前
lili发布了新的文献求助10
18秒前
机灵的新波完成签到 ,获得积分10
19秒前
19秒前
J12138发布了新的文献求助10
20秒前
天天快乐应助乔qiqiqiqi采纳,获得10
21秒前
huo应助小王同学搞学术采纳,获得10
27秒前
啊张应助pumpkin采纳,获得10
28秒前
xiaochao完成签到,获得积分10
28秒前
34秒前
ZZZ应助如意的刚采纳,获得10
34秒前
顺利的冰旋完成签到 ,获得积分10
35秒前
LULU完成签到,获得积分10
37秒前
善学以致用应助之组长了采纳,获得30
38秒前
SunGuangkai发布了新的文献求助10
39秒前
所所应助Monster采纳,获得10
39秒前
小王同学搞学术完成签到,获得积分20
40秒前
xinlei2023发布了新的文献求助10
41秒前
散逸层梦游应助李剑鸿采纳,获得50
41秒前
Orange应助阮煜城采纳,获得10
42秒前
精明寒松完成签到 ,获得积分10
42秒前
xgx984完成签到,获得积分10
43秒前
lili发布了新的文献求助10
45秒前
45秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309767
求助须知:如何正确求助?哪些是违规求助? 2943014
关于积分的说明 8512004
捐赠科研通 2618059
什么是DOI,文献DOI怎么找? 1430795
科研通“疑难数据库(出版商)”最低求助积分说明 664310
邀请新用户注册赠送积分活动 649468