Benchmarking Low-Light Image Enhancement and Beyond

人工智能 计算机科学 计算机视觉 标杆管理 面子(社会学概念) 目标检测 人脸检测 机器视觉 面部识别系统 透视图(图形) 模式识别(心理学) 社会科学 社会学 业务 营销
作者
Jiaying Liu,Dejia Xu,Wenhan Yang,Minhao Fan,Haofeng Huang
出处
期刊:International Journal of Computer Vision [Springer Nature]
卷期号:129 (4): 1153-1184 被引量:111
标识
DOI:10.1007/s11263-020-01418-8
摘要

In this paper, we present a systematic review and evaluation of existing single-image low-light enhancement algorithms. Besides the commonly used low-level vision oriented evaluations, we additionally consider measuring machine vision performance in the low-light condition via face detection task to explore the potential of joint optimization of high-level and low-level vision enhancement. To this end, we first propose a large-scale low-light image dataset serving both low/high-level vision with diversified scenes and contents as well as complex degradation in real scenarios, called Vision Enhancement in the LOw-Light condition (VE-LOL). Beyond paired low/normal-light images without annotations, we additionally include the analysis resource related to human, i.e. face images in the low-light condition with annotated face bounding boxes. Then, efforts are made on benchmarking from the perspective of both human and machine visions. A rich variety of criteria is used for the low-level vision evaluation, including full-reference, no-reference, and semantic similarity metrics. We also measure the effects of the low-light enhancement on face detection in the low-light condition. State-of-the-art face detection methods are used in the evaluation. Furthermore, with the rich material of VE-LOL, we explore the novel problem of joint low-light enhancement and face detection. We develop an enhanced face detector to apply low-light enhancement and face detection jointly. The features extracted by the enhancement module are fed to the successive layer with the same resolution of the detection module. Thus, these features are intertwined together to unitedly learn useful information across two phases, i.e. enhancement and detection. Experiments on VE-LOL provide a comparison of state-of-the-art low-light enhancement algorithms, point out their limitations, and suggest promising future directions. Our dataset has supported the Track “Face Detection in Low Light Conditions” of CVPR UG2+ Challenge (2019–2020) ( http://cvpr2020.ug2challenge.org/ ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助药学牛马采纳,获得10
1秒前
lixm发布了新的文献求助10
2秒前
NAA完成签到,获得积分10
3秒前
3秒前
tao_blue完成签到,获得积分10
3秒前
荔枝完成签到,获得积分20
3秒前
3秒前
4秒前
许多知识完成签到,获得积分10
4秒前
缓慢的战斗机完成签到,获得积分20
5秒前
圣晟胜发布了新的文献求助10
5秒前
科研通AI5应助nextconnie采纳,获得10
6秒前
陈朝旧迹完成签到,获得积分10
6秒前
无花果应助虚心海燕采纳,获得10
7秒前
sun发布了新的文献求助30
8秒前
8秒前
KBYer完成签到,获得积分10
8秒前
FashionBoy应助阳阳采纳,获得10
8秒前
许多知识发布了新的文献求助10
9秒前
苏源智完成签到,获得积分10
9秒前
Andy完成签到 ,获得积分10
11秒前
明理晓霜发布了新的文献求助10
13秒前
ZHANGMANLI0422关注了科研通微信公众号
13秒前
M先生发布了新的文献求助30
14秒前
FashionBoy应助许多知识采纳,获得10
15秒前
Poyd完成签到,获得积分10
18秒前
18秒前
故意的傲玉应助tao_blue采纳,获得10
19秒前
19秒前
kid1912完成签到,获得积分0
19秒前
小马甲应助一网小海蜇采纳,获得10
22秒前
专一的笑阳完成签到 ,获得积分10
22秒前
xuesensu完成签到 ,获得积分10
26秒前
豌豆完成签到,获得积分10
27秒前
M先生完成签到,获得积分10
27秒前
28秒前
30秒前
科研通AI5应助sun采纳,获得10
30秒前
shitzu完成签到 ,获得积分10
31秒前
choco发布了新的文献求助10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849