亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification and validation of an individualized prognostic signature of lower-grade glioma based on nine immune related long non-coding RNA

胶质瘤 免疫系统 比例危险模型 医学 列线图 肿瘤科 生存分析 长非编码RNA 小桶 单变量分析 内科学 核糖核酸 转录组 癌症研究 免疫学 基因 多元分析 生物 基因表达 遗传学
作者
Aierpati Maimaiti,Lei Jiang,Xixian Wang,Xin Shi,Yinan Pei,Yujun Hao,Halimureti Paerhati,Yierpan Zibibula,Abulikemu Abudujielili,Maimaitijiang Kasimu
出处
期刊:Clinical Neurology and Neurosurgery [Elsevier]
卷期号:201: 106464-106464 被引量:19
标识
DOI:10.1016/j.clineuro.2020.106464
摘要

Low-grade glioma (LGG)is one of the most common and aggressive neurological malignant tumors of the central nervous system. Mounting evidence indicates that aberrantly expressed long non-coding RNA (lncRNAs) and immune cell infiltration influence low-grade glioma development. Despite the increasing amount of research on lncRNA, there are very few immune-related lncRNA for LGG studies. We evaluated immune cell infiltration in 529 low-grade glioma patient specimens from TCGA and 1152 normal brain tissue samples from GTEx. ssGSEA was used to generate high, medium, and low immune cell infiltration groups and to examine the heterogeneity of the low-grade glioma immune microenvironment. A risk model of immune-related lncRNAs based on immune gene sets was developed. Sequential single-factor Cox regression, Lasso regression, and stepwise multiple Cox regression analyses uncovered immune-related lncRNAs with low-grade glioma prognostic value. Kaplan-Meier analysis, ROC analysis, and nomograms were used to predict low-grade glioma OS. At length, We performed GO term and KEGG enrichment analyses and used standardized enrichment scores (NES) to identify signaling pathways that were significantly enriched. We identified nine immune-associated lncRNAs with low-grade glioma prognostic value (AC009283.1, AC009227.1, AL121899.1, LINC00174, LINC02166, AC018647.1, AC061961.1, NRAV, and LINC00320).These prognostic lncRNAs were used to establish prognostic markers. Kaplan-Meier Survival analysis revealed a 10-year survival rate of 22.68 % (95 % CI: 13.54–38 %] in high-risk LGG vs. 54 % (95 % CI: 39.04–74.8 %] in low-risk LGG patients. Univariate Cox regression analysis showed that the HR of risk score and 95 % CI were 1.081 and (1.060–1.102) (p < 0.001), respectively. In contrast, those from multivariate Cox regression analysis were 1.066 and (1.046–1.087) (p < 0.001). This indicated that nine LncRNAs are independent prognostic factors for patients with low-grade glioma. GSEA suggests that the identified lncRNAs influence low-grade glioma tumorigenesis and prognosis by modulating immune responses and cancer pathways. Our data highlight the potential prognostic value of the nine immune-related lncRNA in low-grade glioma and may open new research lines and guide low-grade glioma management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
24秒前
东溟渔夫发布了新的文献求助10
30秒前
牛牛月饼完成签到,获得积分10
37秒前
Akim应助东溟渔夫采纳,获得10
37秒前
BBQ关闭了BBQ文献求助
38秒前
39秒前
1分钟前
v哈哈发布了新的文献求助10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
Ming发布了新的文献求助10
2分钟前
SciGPT应助Ming采纳,获得10
2分钟前
瘦瘦的师发布了新的文献求助10
2分钟前
大模型应助zhengzhster采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
自律发布了新的文献求助10
3分钟前
自律完成签到,获得积分10
3分钟前
BBQ发布了新的文献求助10
3分钟前
Ezekiel给Ezekiel的求助进行了留言
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
BBQ完成签到,获得积分10
3分钟前
lim完成签到,获得积分10
4分钟前
4分钟前
zhengzhster发布了新的文献求助10
4分钟前
小邓完成签到,获得积分10
4分钟前
可乐发布了新的文献求助30
4分钟前
量子星尘发布了新的文献求助10
5分钟前
小于完成签到,获得积分10
5分钟前
5分钟前
Ezekiel发布了新的文献求助10
5分钟前
上官枫完成签到 ,获得积分10
5分钟前
5分钟前
Ming发布了新的文献求助10
5分钟前
小于完成签到,获得积分10
5分钟前
Ming完成签到,获得积分10
5分钟前
merrylake完成签到 ,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
vivishe发布了新的文献求助10
5分钟前
vivishe完成签到,获得积分10
6分钟前
George发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664448
求助须知:如何正确求助?哪些是违规求助? 4862399
关于积分的说明 15107785
捐赠科研通 4823068
什么是DOI,文献DOI怎么找? 2581898
邀请新用户注册赠送积分活动 1536037
关于科研通互助平台的介绍 1494433