Eliciting Human Judgment for Prediction Algorithms

程式化事实 计算机科学 算法 点(几何) 随机误差 人为错误 人工智能 统计 数学 经济 几何学 宏观经济学
作者
R.N. Ibrahim,Song‐Hee Kim,Jordan Tong
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (4): 2314-2325 被引量:47
标识
DOI:10.1287/mnsc.2020.3856
摘要

Even when human point forecasts are less accurate than data-based algorithm predictions, they can still help boost performance by being used as algorithm inputs. Assuming one uses human judgment indirectly in this manner, we propose changing the elicitation question from the traditional direct forecast (DF) to what we call the private information adjustment (PIA): how much the human thinks the algorithm should adjust its forecast to account for information the human has that is unused by the algorithm. Using stylized models with and without random error, we theoretically prove that human random error makes eliciting the PIA lead to more accurate predictions than eliciting the DF. However, this DF-PIA gap does not exist for perfectly consistent forecasters. The DF-PIA gap is increasing in the random error that people make while incorporating public information (data that the algorithm uses) but is decreasing in the random error that people make while incorporating private information (data that only the human can use). In controlled experiments with students and Amazon Mechanical Turk workers, we find support for these hypotheses. This paper was accepted by Charles Corbett, operations management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
dqh完成签到,获得积分10
2秒前
大模型应助威武白凝采纳,获得10
3秒前
风中小鸽子完成签到,获得积分10
5秒前
酷波er应助隐风采纳,获得10
6秒前
科研通AI2S应助研友_EZ1GJL采纳,获得10
6秒前
樱桃小贩发布了新的文献求助10
7秒前
机智的伟诚完成签到,获得积分10
7秒前
8秒前
pluto应助ppll3906采纳,获得50
9秒前
大模型应助hcmsaobang2001采纳,获得10
9秒前
啊哈完成签到,获得积分10
10秒前
10秒前
Ava应助李燕君采纳,获得10
10秒前
12秒前
赘婿应助木木采纳,获得10
12秒前
和谐的幼枫完成签到,获得积分10
13秒前
14秒前
情怀应助满意沛槐采纳,获得10
15秒前
共享精神应助wQQ采纳,获得10
15秒前
15秒前
abc完成签到 ,获得积分10
16秒前
18秒前
wangjing发布了新的文献求助10
19秒前
20秒前
20秒前
kk发布了新的文献求助10
20秒前
大脸猫完成签到,获得积分20
20秒前
杜洋完成签到,获得积分10
20秒前
Akim应助小小冰采纳,获得10
21秒前
Faye完成签到 ,获得积分10
21秒前
ABC发布了新的文献求助10
22秒前
24秒前
wQQ完成签到,获得积分10
26秒前
跳跃志泽发布了新的文献求助10
26秒前
良辰应助稳重的谷南采纳,获得20
27秒前
28秒前
LILAN发布了新的文献求助10
29秒前
天天快乐应助跳跃志泽采纳,获得10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306741
求助须知:如何正确求助?哪些是违规求助? 2940503
关于积分的说明 8497451
捐赠科研通 2614749
什么是DOI,文献DOI怎么找? 1428486
科研通“疑难数据库(出版商)”最低求助积分说明 663427
邀请新用户注册赠送积分活动 648259