A Comprehensive Survey on Transfer Learning

学习迁移 计算机科学 感应转移 人工智能 同种类的 领域(数学分析) 机器学习 主动学习(机器学习) 数据科学 培训转移 知识管理 机器人学习 数学 数学分析 组合数学 机器人 移动机器人
作者
Fuzhen Zhuang,Zhiyuan Qi,Keyu Duan,Dongbo Xi,Yongchun Zhu,Hengshu Zhu,Hui Xiong,Qing He
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:109 (1): 43-76 被引量:3683
标识
DOI:10.1109/jproc.2020.3004555
摘要

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target-domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning research studies, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey article reviews more than 40 representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over 20 representative transfer learning models are used for experiments. The models are performed on three different data sets, that is, Amazon Reviews, Reuters-21578, and Office-31, and the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tricia发布了新的文献求助30
1秒前
苗条的紫文完成签到,获得积分20
2秒前
3秒前
5秒前
5秒前
goodsheep完成签到 ,获得积分10
6秒前
1257应助孙小雨采纳,获得10
6秒前
言不得语发布了新的文献求助10
7秒前
7秒前
7秒前
喷泡的兔子完成签到,获得积分10
8秒前
机智的天天完成签到,获得积分10
10秒前
杨琴发布了新的文献求助10
10秒前
深情安青应助愉快冰淇淋采纳,获得10
10秒前
XL完成签到,获得积分10
11秒前
11秒前
11秒前
xt_489完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
酷盖发布了新的文献求助10
14秒前
充电宝应助幸福的柚子橘采纳,获得10
14秒前
hklong发布了新的文献求助10
15秒前
monned发布了新的文献求助10
15秒前
16秒前
16秒前
Paddi发布了新的文献求助10
17秒前
1257应助雨夜星空采纳,获得10
19秒前
19秒前
20秒前
活泼半凡完成签到 ,获得积分10
20秒前
20秒前
20秒前
美好的若枫完成签到,获得积分10
21秒前
明亮元柏发布了新的文献求助10
21秒前
1257应助zsugar采纳,获得10
23秒前
JamesPei应助zsugar采纳,获得10
23秒前
Exploooosion发布了新的文献求助10
23秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076389
求助须知:如何正确求助?哪些是违规求助? 2729242
关于积分的说明 7508108
捐赠科研通 2377477
什么是DOI,文献DOI怎么找? 1260632
科研通“疑难数据库(出版商)”最低求助积分说明 611101
版权声明 597194