已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Comprehensive Survey on Transfer Learning

学习迁移 计算机科学 感应转移 人工智能 同种类的 领域(数学分析) 机器学习 主动学习(机器学习) 数据科学 培训转移 知识管理 机器人学习 数学 数学分析 组合数学 机器人 移动机器人
作者
Fuzhen Zhuang,Zhiyuan Qi,Keyu Duan,Dongbo Xi,Yongchun Zhu,Hengshu Zhu,Hui Xiong,Qing He
出处
期刊:Proceedings of the IEEE [Institute of Electrical and Electronics Engineers]
卷期号:109 (1): 43-76 被引量:3683
标识
DOI:10.1109/jproc.2020.3004555
摘要

Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target-domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning research studies, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey article reviews more than 40 representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over 20 representative transfer learning models are used for experiments. The models are performed on three different data sets, that is, Amazon Reviews, Reuters-21578, and Office-31, and the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼醉山完成签到,获得积分10
2秒前
科研通AI2S应助郜雨寒采纳,获得10
2秒前
庄默羽发布了新的文献求助10
5秒前
李加一完成签到 ,获得积分10
5秒前
情怀应助sjxx采纳,获得10
6秒前
8秒前
nadia完成签到,获得积分10
18秒前
19秒前
微笑的冥幽完成签到,获得积分20
19秒前
20秒前
Sanqainli发布了新的文献求助10
20秒前
21秒前
21秒前
24秒前
倔驴发布了新的文献求助10
25秒前
小马甲应助欣慰问凝采纳,获得30
25秒前
youkekyt发布了新的文献求助10
25秒前
26秒前
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
27秒前
LILI完成签到 ,获得积分10
28秒前
29秒前
Sanqainli完成签到,获得积分10
30秒前
TTT0530发布了新的文献求助10
30秒前
31秒前
庄默羽完成签到,获得积分10
33秒前
紫色风铃发布了新的文献求助10
35秒前
可爱的函函应助花花521采纳,获得10
36秒前
喔喔佳佳L完成签到 ,获得积分10
36秒前
wantzzz发布了新的文献求助10
37秒前
38秒前
TTT0530完成签到,获得积分10
38秒前
youkekyt完成签到,获得积分10
39秒前
春鸮鸟完成签到 ,获得积分10
39秒前
善学以致用应助TTT0530采纳,获得10
41秒前
霸气的思柔完成签到,获得积分10
41秒前
42秒前
活泼啤酒完成签到 ,获得积分10
42秒前
LIN应助宋甜甜采纳,获得10
42秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139400
求助须知:如何正确求助?哪些是违规求助? 2790323
关于积分的说明 7794903
捐赠科研通 2446762
什么是DOI,文献DOI怎么找? 1301366
科研通“疑难数据库(出版商)”最低求助积分说明 626153
版权声明 601141