Preparation of Lipase–Electrospun SiO2 Nanofiber Membrane Bioreactors and Their Targeted Catalytic Ability at the Macroscopic Oil–Water Interface

脂肪酶 化学工程 静电纺丝 纳米纤维 生物反应器 材料科学 水解 催化作用 化学 有机化学 纳米技术 聚合物 生物化学 工程类
作者
Lei Kuang,Qianqian Zhang,Jinlong Li,Huafeng Tian
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:68 (31): 8362-8369 被引量:16
标识
DOI:10.1021/acs.jafc.0c02801
摘要

Lipase is one of the most widely used enzymes in biocatalysis. Because of the special structure of the catalytic active center, lipases show high catalytic activity at oil–water interfaces. Hence, the interface plays a key role in activating and modulating lipase biocatalysis. Compared with traditional catalytic systems that offer interfaces, such as emulsions, a lipase–membrane bioreactor exhibits many obvious advantages when at the macroscopic oil–water system. In our current research, a series of new Burkholderia cepacia lipase (BCL)–SiO2 nanofiber membrane (NFM) bioreactors prepared via combined electrospinning and immobilization strategies were reported. These SiO2 NFMs assisted BCL in reaching the oil–water interface for efficient catalysis. The enzyme loading capacity and catalytic efficiency of BCL–SiO2 NFMs varied with the surface hydrophobicity of the electrospun NFMs. As the hydrophobicity increased, the activity decreased from 2.43-fold to 0.74-fold that of free BCL. However, the lipase-loading capacity increased obviously when the hydrophobicity of the SiO2 NFMs increased from 0 to 143°, and no significant change was observed when the hydrophobicity of the SiO2 NFMs increased from 143 to 153°. The gel trapping technique proved that the hydrolytic activity of the different BCL–SiO2 NFM bioreactors depends on the contact area of the membrane at the oil–water interface. BCL–SiO2 NFM, BCL–SiO2 NFM-C12, and BCL–SiO2 NFM-C18 retained 32, 83, and 42% of activity, respectively, after five cycles of reuse. The current work was a useful exploration of the construction and modification of lipase–membrane reactors based on electrospun inorganic silicon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小郭完成签到,获得积分10
刚刚
刚刚
如意秋珊发布了新的文献求助10
1秒前
Amyel发布了新的文献求助10
1秒前
感动澜发布了新的文献求助20
1秒前
mxh完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
科研通AI6应助如意枫叶采纳,获得10
2秒前
3秒前
黄心悦发布了新的文献求助10
3秒前
范12发布了新的文献求助10
3秒前
3秒前
汪小杰发布了新的文献求助10
4秒前
猪猪侠完成签到 ,获得积分10
4秒前
XXXX完成签到 ,获得积分20
4秒前
十一发布了新的文献求助10
4秒前
务实的凝天完成签到,获得积分10
5秒前
ding应助fanqie采纳,获得10
5秒前
5秒前
顺利汉堡发布了新的文献求助10
6秒前
王木木发布了新的文献求助10
6秒前
RK_404完成签到,获得积分10
7秒前
7秒前
内向觅海发布了新的文献求助10
7秒前
在水一方应助穆空采纳,获得10
7秒前
Ffff发布了新的文献求助10
8秒前
8秒前
椰子发布了新的文献求助10
8秒前
8秒前
8秒前
科研通AI6应助scott采纳,获得10
8秒前
Lucas应助tumankol采纳,获得10
9秒前
10秒前
科研通AI6应助邢问芙采纳,获得10
11秒前
11秒前
FashionBoy应助huihui采纳,获得10
11秒前
二号发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5481527
求助须知:如何正确求助?哪些是违规求助? 4582574
关于积分的说明 14385611
捐赠科研通 4511195
什么是DOI,文献DOI怎么找? 2472283
邀请新用户注册赠送积分活动 1458581
关于科研通互助平台的介绍 1432094