Preparation of Lipase–Electrospun SiO2 Nanofiber Membrane Bioreactors and Their Targeted Catalytic Ability at the Macroscopic Oil–Water Interface

脂肪酶 化学工程 静电纺丝 纳米纤维 生物反应器 材料科学 水解 催化作用 化学 有机化学 纳米技术 聚合物 生物化学 工程类
作者
Lei Kuang,Qianqian Zhang,Jinlong Li,Huafeng Tian
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
卷期号:68 (31): 8362-8369 被引量:16
标识
DOI:10.1021/acs.jafc.0c02801
摘要

Lipase is one of the most widely used enzymes in biocatalysis. Because of the special structure of the catalytic active center, lipases show high catalytic activity at oil–water interfaces. Hence, the interface plays a key role in activating and modulating lipase biocatalysis. Compared with traditional catalytic systems that offer interfaces, such as emulsions, a lipase–membrane bioreactor exhibits many obvious advantages when at the macroscopic oil–water system. In our current research, a series of new Burkholderia cepacia lipase (BCL)–SiO2 nanofiber membrane (NFM) bioreactors prepared via combined electrospinning and immobilization strategies were reported. These SiO2 NFMs assisted BCL in reaching the oil–water interface for efficient catalysis. The enzyme loading capacity and catalytic efficiency of BCL–SiO2 NFMs varied with the surface hydrophobicity of the electrospun NFMs. As the hydrophobicity increased, the activity decreased from 2.43-fold to 0.74-fold that of free BCL. However, the lipase-loading capacity increased obviously when the hydrophobicity of the SiO2 NFMs increased from 0 to 143°, and no significant change was observed when the hydrophobicity of the SiO2 NFMs increased from 143 to 153°. The gel trapping technique proved that the hydrolytic activity of the different BCL–SiO2 NFM bioreactors depends on the contact area of the membrane at the oil–water interface. BCL–SiO2 NFM, BCL–SiO2 NFM-C12, and BCL–SiO2 NFM-C18 retained 32, 83, and 42% of activity, respectively, after five cycles of reuse. The current work was a useful exploration of the construction and modification of lipase–membrane reactors based on electrospun inorganic silicon.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
a远离霓虹完成签到,获得积分10
3秒前
xiaoshishu发布了新的文献求助10
4秒前
彩色的慕凝完成签到,获得积分10
4秒前
Mottri发布了新的文献求助10
5秒前
衣谷完成签到 ,获得积分10
6秒前
8秒前
爆米花应助大爱仙尊采纳,获得10
9秒前
桐桐应助aabbfz采纳,获得10
9秒前
Komorebi完成签到 ,获得积分10
10秒前
Sarah完成签到,获得积分10
10秒前
咖啡豆应助乐乐乐乐乐乐采纳,获得20
11秒前
11秒前
11秒前
Hello应助乐乐乐乐乐乐采纳,获得10
11秒前
大个应助乐乐乐乐乐乐采纳,获得10
11秒前
12秒前
13秒前
自然的珩完成签到,获得积分10
13秒前
14秒前
Erica_li发布了新的文献求助10
14秒前
15秒前
16秒前
科研通AI2S应助Mottri采纳,获得10
16秒前
所所应助自然的珩采纳,获得10
17秒前
阔达的铅笔完成签到,获得积分10
18秒前
大爱仙尊完成签到,获得积分10
19秒前
qqq完成签到,获得积分20
19秒前
carbonhan完成签到,获得积分10
19秒前
rita_sun1969完成签到,获得积分10
19秒前
20秒前
hn关闭了hn文献求助
20秒前
aabbfz发布了新的文献求助10
20秒前
大爱仙尊发布了新的文献求助10
21秒前
22秒前
24秒前
林一发布了新的文献求助10
24秒前
科研通AI2S应助Mottri采纳,获得10
24秒前
27秒前
钮卿完成签到,获得积分10
28秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3136281
求助须知:如何正确求助?哪些是违规求助? 2787312
关于积分的说明 7780828
捐赠科研通 2443293
什么是DOI,文献DOI怎么找? 1299081
科研通“疑难数据库(出版商)”最低求助积分说明 625325
版权声明 600905