Convolutional neural network‐based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse

分割 卷积神经网络 人工智能 计算机科学 磁共振成像 Sørensen–骰子系数 图像分割 计算机视觉 模式识别(心理学) 医学 放射科
作者
Fei Feng,James A. Ashton‐Miller,John O. L. DeLancey,Jiajia Luo
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4281-4293 被引量:17
标识
DOI:10.1002/mp.14377
摘要

Purpose Automated segmentation could improve the efficiency of modeling‐based pelvic organ prolapse (POP) evaluations. However, segmentation performance is limited by the blurry soft tissue boundaries. In this study, we aimed to present a hybrid solution for uterus, rectum, bladder, and levator ani muscle segmentation by combining a convolutional neural network (CNN) and a level set method. Methods We used 24 sagittal pelvic floor magnetic resonance (MR) series from six anterior vaginal prolapse and six posterior vaginal prolapse subjects (a total 528 MR images). The stress MR images were performed both at rest and at maximal Valsalva. We assigned 264 images for training, 132 images for validation, and 132 images for testing. A CNN was designed by introducing a multi‐resolution features pyramid module (MRFP) into an encoder‐decoder model. Depth separable convolution and pretraining were used to improve model convergence. Multiclass cross entropy loss and multiclass Dice loss were used for model training. The dice similarity coefficient (DSC) and average surface distance (ASD) were used for evaluating the segmentation results. To prove the effectiveness of our model, we compared it with advanced segmentation methods including Deeplabv3+, U‐Net, and FCN‐8s. The ablation study was designed to quantify the contributions of MRFP, the encoder network, and pretraining. Besides, we investigated the working mechanism of MRFP in the segmentation network by comparing our model with three of its variants. Finally, the level set method was used to improve the CNN model further. Results Dice loss showed better segmentation performance than multiclass cross entropy loss. MRFP was efficacious for different encoder networks. With MRFP, U‐Net and U‐Net‐X (X represents Xception encoder network) have improved the DSC, on average by 6.8 and 5.3 points. Compared with different CNN models, our model achieved the highest average DSC of 65.6 points and the lowest average ASD of 2.9 mm. With the level set method, the DSC of our model improved to 69.4 points. Conclusions MRFP proved to be effective in addressing the blurry soft tissue boundary problem on pelvic floor MR images. A hybrid solution based on CNN and level set method was presented for pelvic organ segmentation both at rest and at maximal Valsalva; with this method, we achieved state‐of‐the‐art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
7秒前
8秒前
xianyaoz完成签到 ,获得积分10
8秒前
明哥完成签到,获得积分10
8秒前
鑫儿发布了新的文献求助20
8秒前
qing1245完成签到,获得积分10
9秒前
琉璃完成签到,获得积分10
9秒前
11秒前
zino完成签到,获得积分10
13秒前
shiyousheng完成签到,获得积分10
13秒前
明哥发布了新的文献求助10
13秒前
shiyousheng发布了新的文献求助10
16秒前
Hello应助DQ采纳,获得10
18秒前
海意完成签到,获得积分10
19秒前
Green完成签到,获得积分10
19秒前
研友_VZG7GZ应助一棵草采纳,获得10
21秒前
黄黄黄完成签到,获得积分10
22秒前
25秒前
tian完成签到,获得积分0
26秒前
毅诚菌完成签到,获得积分10
27秒前
28秒前
swing完成签到 ,获得积分10
29秒前
大模型应助wang采纳,获得10
29秒前
Ethanyoyo0917完成签到,获得积分10
30秒前
JJS完成签到,获得积分10
30秒前
汉堡包应助鑫儿采纳,获得10
31秒前
31秒前
踏实嚣完成签到 ,获得积分10
33秒前
33秒前
chenxilulu完成签到,获得积分10
34秒前
Jacky完成签到,获得积分10
34秒前
qi0625完成签到,获得积分10
35秒前
35秒前
36秒前
36秒前
yefeng完成签到,获得积分10
37秒前
复杂的兔子完成签到,获得积分10
37秒前
小彭陪小崔读个研完成签到 ,获得积分10
40秒前
41秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093