Convolutional neural network‐based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse

分割 卷积神经网络 人工智能 计算机科学 磁共振成像 Sørensen–骰子系数 图像分割 计算机视觉 模式识别(心理学) 医学 放射科
作者
Fei Feng,James A. Ashton‐Miller,John O. L. DeLancey,Jiajia Luo
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4281-4293 被引量:17
标识
DOI:10.1002/mp.14377
摘要

Purpose Automated segmentation could improve the efficiency of modeling‐based pelvic organ prolapse (POP) evaluations. However, segmentation performance is limited by the blurry soft tissue boundaries. In this study, we aimed to present a hybrid solution for uterus, rectum, bladder, and levator ani muscle segmentation by combining a convolutional neural network (CNN) and a level set method. Methods We used 24 sagittal pelvic floor magnetic resonance (MR) series from six anterior vaginal prolapse and six posterior vaginal prolapse subjects (a total 528 MR images). The stress MR images were performed both at rest and at maximal Valsalva. We assigned 264 images for training, 132 images for validation, and 132 images for testing. A CNN was designed by introducing a multi‐resolution features pyramid module (MRFP) into an encoder‐decoder model. Depth separable convolution and pretraining were used to improve model convergence. Multiclass cross entropy loss and multiclass Dice loss were used for model training. The dice similarity coefficient (DSC) and average surface distance (ASD) were used for evaluating the segmentation results. To prove the effectiveness of our model, we compared it with advanced segmentation methods including Deeplabv3+, U‐Net, and FCN‐8s. The ablation study was designed to quantify the contributions of MRFP, the encoder network, and pretraining. Besides, we investigated the working mechanism of MRFP in the segmentation network by comparing our model with three of its variants. Finally, the level set method was used to improve the CNN model further. Results Dice loss showed better segmentation performance than multiclass cross entropy loss. MRFP was efficacious for different encoder networks. With MRFP, U‐Net and U‐Net‐X (X represents Xception encoder network) have improved the DSC, on average by 6.8 and 5.3 points. Compared with different CNN models, our model achieved the highest average DSC of 65.6 points and the lowest average ASD of 2.9 mm. With the level set method, the DSC of our model improved to 69.4 points. Conclusions MRFP proved to be effective in addressing the blurry soft tissue boundary problem on pelvic floor MR images. A hybrid solution based on CNN and level set method was presented for pelvic organ segmentation both at rest and at maximal Valsalva; with this method, we achieved state‐of‐the‐art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anpucle完成签到,获得积分10
1秒前
CC发布了新的文献求助10
1秒前
鲜艳的帅哥完成签到,获得积分10
2秒前
2秒前
铁观音发布了新的文献求助10
2秒前
3秒前
张张张完成签到,获得积分10
4秒前
曹帅完成签到,获得积分10
4秒前
5秒前
友好的天奇完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
张大忽悠发布了新的文献求助10
7秒前
霜鸣发布了新的文献求助10
8秒前
铁观音完成签到,获得积分10
8秒前
8秒前
落雨冥完成签到,获得积分10
9秒前
moqianqian发布了新的文献求助10
9秒前
10秒前
ding应助tamaco采纳,获得10
10秒前
吴晨曦完成签到 ,获得积分10
10秒前
花Cheung发布了新的文献求助10
12秒前
哈哈哈哈发布了新的文献求助10
14秒前
14秒前
不样钓鱼完成签到,获得积分10
15秒前
16秒前
16秒前
善良的人发布了新的文献求助10
17秒前
Zkxxxx应助不样钓鱼采纳,获得10
18秒前
18秒前
SOS发布了新的文献求助10
19秒前
19秒前
培培完成签到 ,获得积分10
19秒前
水煮牛肉发布了新的文献求助10
20秒前
脑洞疼应助11采纳,获得10
20秒前
spencer177应助薛定谔的柯基采纳,获得10
21秒前
科研通AI2S应助luping采纳,获得10
22秒前
黑色基因发布了新的文献求助20
23秒前
23秒前
water应助江峰采纳,获得10
24秒前
陆千万完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958009
求助须知:如何正确求助?哪些是违规求助? 3504129
关于积分的说明 11117204
捐赠科研通 3235512
什么是DOI,文献DOI怎么找? 1788281
邀请新用户注册赠送积分活动 871191
科研通“疑难数据库(出版商)”最低求助积分说明 802485