亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional neural network‐based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse

分割 卷积神经网络 人工智能 计算机科学 磁共振成像 Sørensen–骰子系数 图像分割 计算机视觉 模式识别(心理学) 医学 放射科
作者
Fei Feng,James A. Ashton‐Miller,John O. L. DeLancey,Jiajia Luo
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4281-4293 被引量:17
标识
DOI:10.1002/mp.14377
摘要

Purpose Automated segmentation could improve the efficiency of modeling‐based pelvic organ prolapse (POP) evaluations. However, segmentation performance is limited by the blurry soft tissue boundaries. In this study, we aimed to present a hybrid solution for uterus, rectum, bladder, and levator ani muscle segmentation by combining a convolutional neural network (CNN) and a level set method. Methods We used 24 sagittal pelvic floor magnetic resonance (MR) series from six anterior vaginal prolapse and six posterior vaginal prolapse subjects (a total 528 MR images). The stress MR images were performed both at rest and at maximal Valsalva. We assigned 264 images for training, 132 images for validation, and 132 images for testing. A CNN was designed by introducing a multi‐resolution features pyramid module (MRFP) into an encoder‐decoder model. Depth separable convolution and pretraining were used to improve model convergence. Multiclass cross entropy loss and multiclass Dice loss were used for model training. The dice similarity coefficient (DSC) and average surface distance (ASD) were used for evaluating the segmentation results. To prove the effectiveness of our model, we compared it with advanced segmentation methods including Deeplabv3+, U‐Net, and FCN‐8s. The ablation study was designed to quantify the contributions of MRFP, the encoder network, and pretraining. Besides, we investigated the working mechanism of MRFP in the segmentation network by comparing our model with three of its variants. Finally, the level set method was used to improve the CNN model further. Results Dice loss showed better segmentation performance than multiclass cross entropy loss. MRFP was efficacious for different encoder networks. With MRFP, U‐Net and U‐Net‐X (X represents Xception encoder network) have improved the DSC, on average by 6.8 and 5.3 points. Compared with different CNN models, our model achieved the highest average DSC of 65.6 points and the lowest average ASD of 2.9 mm. With the level set method, the DSC of our model improved to 69.4 points. Conclusions MRFP proved to be effective in addressing the blurry soft tissue boundary problem on pelvic floor MR images. A hybrid solution based on CNN and level set method was presented for pelvic organ segmentation both at rest and at maximal Valsalva; with this method, we achieved state‐of‐the‐art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
荼蘼发布了新的文献求助10
2秒前
李健应助TingtingGZ采纳,获得10
11秒前
情怀应助荼蘼采纳,获得10
11秒前
耶斯发布了新的文献求助10
17秒前
20秒前
TingtingGZ发布了新的文献求助10
25秒前
荼蘼完成签到,获得积分20
25秒前
汉堡包应助耶斯采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
Chloe应助科研通管家采纳,获得10
1分钟前
1分钟前
十三发布了新的文献求助10
1分钟前
城南花已开完成签到,获得积分10
1分钟前
科研通AI5应助十三采纳,获得30
1分钟前
花花完成签到 ,获得积分10
2分钟前
十三完成签到,获得积分20
2分钟前
火星上的博涛完成签到,获得积分20
2分钟前
穆振家完成签到,获得积分10
2分钟前
king完成签到 ,获得积分10
2分钟前
上官若男应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI6应助勤劳初雪采纳,获得10
3分钟前
浮游应助勤劳初雪采纳,获得10
3分钟前
女爰舍予完成签到 ,获得积分10
3分钟前
李健应助勤劳初雪采纳,获得10
4分钟前
予秋发布了新的文献求助10
4分钟前
4分钟前
4分钟前
勤劳初雪完成签到 ,获得积分10
4分钟前
予秋发布了新的文献求助10
4分钟前
丘比特应助隐形的小刺猬采纳,获得10
4分钟前
5分钟前
AS发布了新的文献求助10
5分钟前
Chloe应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
柠檬完成签到,获得积分10
5分钟前
AS完成签到,获得积分10
5分钟前
完美世界应助TingtingGZ采纳,获得10
6分钟前
6分钟前
TingtingGZ发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 500
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4900728
求助须知:如何正确求助?哪些是违规求助? 4180509
关于积分的说明 12976906
捐赠科研通 3945262
什么是DOI,文献DOI怎么找? 2164035
邀请新用户注册赠送积分活动 1182326
关于科研通互助平台的介绍 1088546