Convolutional neural network‐based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse

分割 卷积神经网络 人工智能 计算机科学 磁共振成像 Sørensen–骰子系数 图像分割 计算机视觉 模式识别(心理学) 医学 放射科
作者
Fei Feng,James A. Ashton‐Miller,John O. L. DeLancey,Jiajia Luo
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4281-4293 被引量:17
标识
DOI:10.1002/mp.14377
摘要

Purpose Automated segmentation could improve the efficiency of modeling‐based pelvic organ prolapse (POP) evaluations. However, segmentation performance is limited by the blurry soft tissue boundaries. In this study, we aimed to present a hybrid solution for uterus, rectum, bladder, and levator ani muscle segmentation by combining a convolutional neural network (CNN) and a level set method. Methods We used 24 sagittal pelvic floor magnetic resonance (MR) series from six anterior vaginal prolapse and six posterior vaginal prolapse subjects (a total 528 MR images). The stress MR images were performed both at rest and at maximal Valsalva. We assigned 264 images for training, 132 images for validation, and 132 images for testing. A CNN was designed by introducing a multi‐resolution features pyramid module (MRFP) into an encoder‐decoder model. Depth separable convolution and pretraining were used to improve model convergence. Multiclass cross entropy loss and multiclass Dice loss were used for model training. The dice similarity coefficient (DSC) and average surface distance (ASD) were used for evaluating the segmentation results. To prove the effectiveness of our model, we compared it with advanced segmentation methods including Deeplabv3+, U‐Net, and FCN‐8s. The ablation study was designed to quantify the contributions of MRFP, the encoder network, and pretraining. Besides, we investigated the working mechanism of MRFP in the segmentation network by comparing our model with three of its variants. Finally, the level set method was used to improve the CNN model further. Results Dice loss showed better segmentation performance than multiclass cross entropy loss. MRFP was efficacious for different encoder networks. With MRFP, U‐Net and U‐Net‐X (X represents Xception encoder network) have improved the DSC, on average by 6.8 and 5.3 points. Compared with different CNN models, our model achieved the highest average DSC of 65.6 points and the lowest average ASD of 2.9 mm. With the level set method, the DSC of our model improved to 69.4 points. Conclusions MRFP proved to be effective in addressing the blurry soft tissue boundary problem on pelvic floor MR images. A hybrid solution based on CNN and level set method was presented for pelvic organ segmentation both at rest and at maximal Valsalva; with this method, we achieved state‐of‐the‐art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
了又柳完成签到 ,获得积分10
1秒前
BENpao123发布了新的文献求助10
3秒前
NexusExplorer应助ruoyu111采纳,获得10
4秒前
情怀应助科研通管家采纳,获得10
5秒前
李爱国应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
Owen应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
斯文败类应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
周周发布了新的文献求助10
6秒前
7秒前
酷波er应助零蝉采纳,获得10
10秒前
舒心靖琪完成签到 ,获得积分10
11秒前
239287完成签到,获得积分10
13秒前
Owen应助macxinn采纳,获得10
15秒前
16秒前
18秒前
时尚丹寒完成签到 ,获得积分10
18秒前
知胜zjl完成签到 ,获得积分10
20秒前
零蝉发布了新的文献求助10
24秒前
老黑完成签到,获得积分10
25秒前
Jinyang完成签到 ,获得积分10
25秒前
xh完成签到,获得积分10
27秒前
不想做实验完成签到,获得积分10
28秒前
yanyimeng完成签到,获得积分10
29秒前
30秒前
sera发布了新的文献求助10
37秒前
agent完成签到 ,获得积分10
41秒前
卡卡完成签到,获得积分10
43秒前
米妮完成签到,获得积分10
46秒前
灰色与青完成签到,获得积分10
46秒前
48秒前
婷婷完成签到,获得积分20
49秒前
过于喧嚣的孤独完成签到,获得积分10
49秒前
Di完成签到 ,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761818
求助须知:如何正确求助?哪些是违规求助? 3305596
关于积分的说明 10134822
捐赠科研通 3019634
什么是DOI,文献DOI怎么找? 1658239
邀请新用户注册赠送积分活动 792029
科研通“疑难数据库(出版商)”最低求助积分说明 754751