亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Convolutional neural network‐based pelvic floor structure segmentation using magnetic resonance imaging in pelvic organ prolapse

分割 卷积神经网络 人工智能 计算机科学 磁共振成像 Sørensen–骰子系数 图像分割 计算机视觉 模式识别(心理学) 医学 放射科
作者
Fei Feng,James A. Ashton‐Miller,John O. L. DeLancey,Jiajia Luo
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4281-4293 被引量:17
标识
DOI:10.1002/mp.14377
摘要

Purpose Automated segmentation could improve the efficiency of modeling‐based pelvic organ prolapse (POP) evaluations. However, segmentation performance is limited by the blurry soft tissue boundaries. In this study, we aimed to present a hybrid solution for uterus, rectum, bladder, and levator ani muscle segmentation by combining a convolutional neural network (CNN) and a level set method. Methods We used 24 sagittal pelvic floor magnetic resonance (MR) series from six anterior vaginal prolapse and six posterior vaginal prolapse subjects (a total 528 MR images). The stress MR images were performed both at rest and at maximal Valsalva. We assigned 264 images for training, 132 images for validation, and 132 images for testing. A CNN was designed by introducing a multi‐resolution features pyramid module (MRFP) into an encoder‐decoder model. Depth separable convolution and pretraining were used to improve model convergence. Multiclass cross entropy loss and multiclass Dice loss were used for model training. The dice similarity coefficient (DSC) and average surface distance (ASD) were used for evaluating the segmentation results. To prove the effectiveness of our model, we compared it with advanced segmentation methods including Deeplabv3+, U‐Net, and FCN‐8s. The ablation study was designed to quantify the contributions of MRFP, the encoder network, and pretraining. Besides, we investigated the working mechanism of MRFP in the segmentation network by comparing our model with three of its variants. Finally, the level set method was used to improve the CNN model further. Results Dice loss showed better segmentation performance than multiclass cross entropy loss. MRFP was efficacious for different encoder networks. With MRFP, U‐Net and U‐Net‐X (X represents Xception encoder network) have improved the DSC, on average by 6.8 and 5.3 points. Compared with different CNN models, our model achieved the highest average DSC of 65.6 points and the lowest average ASD of 2.9 mm. With the level set method, the DSC of our model improved to 69.4 points. Conclusions MRFP proved to be effective in addressing the blurry soft tissue boundary problem on pelvic floor MR images. A hybrid solution based on CNN and level set method was presented for pelvic organ segmentation both at rest and at maximal Valsalva; with this method, we achieved state‐of‐the‐art results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thangxtz完成签到,获得积分10
17秒前
hucheng发布了新的文献求助30
27秒前
lili完成签到 ,获得积分10
36秒前
熊孩子完成签到,获得积分10
38秒前
桐桐应助育种小杰采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
shadow发布了新的文献求助30
2分钟前
luckyalias完成签到 ,获得积分10
2分钟前
一杯美式完成签到,获得积分20
2分钟前
hucheng发布了新的文献求助10
2分钟前
2分钟前
杳鸢应助个性的以菱采纳,获得50
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
爱静静应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
华仔应助hucheng采纳,获得10
3分钟前
3分钟前
育种小杰发布了新的文献求助10
4分钟前
育种小杰完成签到,获得积分10
4分钟前
AireenBeryl531完成签到,获得积分0
4分钟前
爱静静完成签到,获得积分0
4分钟前
4分钟前
xiaoQ完成签到,获得积分10
5分钟前
shadow发布了新的文献求助10
5分钟前
xiaoQ发布了新的文献求助20
5分钟前
shadow完成签到,获得积分10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
爱静静应助科研通管家采纳,获得10
5分钟前
6分钟前
gszy1975完成签到,获得积分10
6分钟前
hucheng发布了新的文献求助10
6分钟前
天才小熊猫完成签到,获得积分10
6分钟前
英俊的铭应助国色不染尘采纳,获得30
6分钟前
7分钟前
hucheng完成签到,获得积分10
7分钟前
7分钟前
7分钟前
爱静静应助科研通管家采纳,获得10
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3154982
求助须知:如何正确求助?哪些是违规求助? 2805698
关于积分的说明 7865814
捐赠科研通 2463938
什么是DOI,文献DOI怎么找? 1311678
科研通“疑难数据库(出版商)”最低求助积分说明 629688
版权声明 601853