清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Comparative investigation into effects of the interplay between absorber layer crystallinity and interfacial defect states on the performance of lead-based and tin-based perovskite solar cells

结晶度 钙钛矿(结构) 材料科学 图层(电子) 光电子学 铅(地质) 化学工程 纳米技术 复合材料 冶金 地质学 地貌学 工程类
作者
Rushi Jani,Kshitij Bhargava
出处
期刊:Semiconductor Science and Technology [IOP Publishing]
卷期号:35 (10): 105007-105007 被引量:12
标识
DOI:10.1088/1361-6641/aba229
摘要

Abstract This report computationally investigates the relative influence of absorber layer crystallinity and the nature of interfaces in lead-based (toxic) and tin-based (non-toxic) perovskite solar cells using SCAPS-1D. The absorber layer crystallinity was modelled in terms of varying charge carrier mobility and defect density while the interfacial behaviour was modelled through varying defect density at the electron transport material (ETM)/perovskite and perovskite/hole transport material (HTM) interfaces. The results suggest that tuning of the aforementioned parameters plays a critical role in improving the efficiency of perovskite solar cells. In-depth analysis of the results elucidates that the performance of both types of simulated structure is critically dependent on the crystallinity of the perovskite absorber layer. Furthermore, the performance of the lead-based structure is more dependent on the nature of the ETM/perovskite interface than that of the perovskite/HTM interface while the tin-based structure is dependent on the nature of both the interfaces. Moreover, the tin-based structure reveals a possibility of achieving performance comparable/superior to that of its lead-based counterpart by reducing the defect density inside the absorber layer. The findings are key towards the performance enhancement in perovskite solar cells and especially tin-based perovskite solar cells, which are deemed to be a potential replacement for lead-based perovskite solar cells.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
10秒前
zh完成签到,获得积分10
14秒前
15秒前
阳光的丹雪完成签到,获得积分10
25秒前
风从海上来完成签到,获得积分20
31秒前
31秒前
40秒前
科研小贩发布了新的文献求助10
44秒前
量子星尘发布了新的文献求助10
59秒前
大医仁心完成签到 ,获得积分10
1分钟前
daizi发布了新的文献求助40
1分钟前
daizi完成签到,获得积分20
1分钟前
2分钟前
随心所欲完成签到 ,获得积分10
3分钟前
3分钟前
现代天川发布了新的文献求助10
3分钟前
科研辣鸡发布了新的文献求助10
3分钟前
走啊走应助科研辣鸡采纳,获得10
3分钟前
科研通AI6应助现代天川采纳,获得30
4分钟前
4分钟前
4分钟前
科研通AI2S应助lawang采纳,获得10
4分钟前
丘比特应助lawang采纳,获得10
4分钟前
kmning发布了新的文献求助10
4分钟前
康康XY完成签到 ,获得积分10
5分钟前
jeff发布了新的文献求助10
5分钟前
Ava应助lawang采纳,获得10
5分钟前
上官若男应助lawang采纳,获得10
5分钟前
李健应助lawang采纳,获得10
5分钟前
ding应助lawang采纳,获得10
5分钟前
Akim应助lawang采纳,获得10
5分钟前
英俊的铭应助lawang采纳,获得10
5分钟前
李健应助lawang采纳,获得10
5分钟前
英俊的铭应助lawang采纳,获得10
5分钟前
慕青应助lawang采纳,获得10
5分钟前
科目三应助lawang采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
灿烂而孤独的八戒完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658192
求助须知:如何正确求助?哪些是违规求助? 4818285
关于积分的说明 15080986
捐赠科研通 4816616
什么是DOI,文献DOI怎么找? 2577512
邀请新用户注册赠送积分活动 1532403
关于科研通互助平台的介绍 1491057