Defects engineered 2D ultrathin cobalt hydroxide nanosheets as highly efficient electrocatalyst for non-enzymatic electrochemical sensing of glucose and l-cysteine

电催化剂 氢氧化钴 电化学 生物传感器 材料科学 检出限 二硫化钼 纳米技术 生物分子 化学 线性范围 纳米材料 化学工程 无机化学 组合化学 电极 物理化学 工程类 色谱法 冶金
作者
Paramasivam Balasubramanian,Shao‐Bin He,Hao‐Hua Deng,Hua‐Ping Peng,Wei Chen
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:320: 128374-128374 被引量:52
标识
DOI:10.1016/j.snb.2020.128374
摘要

Engineering of nanomaterials with atomic defects has becoming an effective way to boost the sensitivity of the electrochemical biosensors but challenging. Herein, a rational, facile and in-situ strategy has been reported to obtain cobalt hydroxide nanosheets (VCo-Co(OH)2) with abundant cobalt vacancies. The cobalt defects greatly enriched electroactive sites and charge transfer rates, thereby delivered excellent electrocatalytic oxidation performance towards glucose and l-cysteine. The dynamic range and low limit of detection of glucose at VCo-Co(OH)2 electrodes were found as 0.4 μM–8.23 mM and 295 nM respectively. Besides, VCo-Co(OH)2 electrodes accurately sensed the l-cysteine with lowest detection limit (76.5 nM), and broad linear sensing range (200 nM-1.94 mM), which are better than the performance of defect-free Co(OH)2 electrodes, evidence that construction of cobalt vacancy significantly boosted the electrocatalysis. Importantly, fabricated sensors had excellent interference immunity against the many biomolecules, owns good stability and reproducibility. Present work not only proposed a novel and simplistic approach to prepare the metal hydroxides with copious metal cation vacancies for electrocatalysis but also provides economical, precise, high-sensitive and disposable biosensors for clinical analysis glucose and l-cysteine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助怡然的半梦采纳,获得10
刚刚
无极微光应助ttt采纳,获得20
刚刚
ArcMayuri完成签到,获得积分10
1秒前
小天才发布了新的文献求助10
1秒前
勤奋的一手完成签到,获得积分10
1秒前
无极微光应助bai采纳,获得20
2秒前
Andone完成签到,获得积分10
2秒前
2秒前
2秒前
LH完成签到,获得积分10
3秒前
3秒前
无私的朝雪完成签到,获得积分10
3秒前
Ava应助正直听芹采纳,获得10
3秒前
txy关注了科研通微信公众号
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
33完成签到,获得积分10
6秒前
NCS完成签到,获得积分10
6秒前
乐乐应助香橙采纳,获得10
6秒前
狄拉克乐园完成签到,获得积分10
7秒前
爆米花应助renkemaomao采纳,获得10
7秒前
完美世界应助Max采纳,获得10
7秒前
Cyrus完成签到,获得积分10
7秒前
7秒前
充电宝应助楚天正阔采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
老迟到的友菱完成签到,获得积分10
8秒前
9秒前
NexusExplorer应助小天才采纳,获得10
10秒前
strawberry发布了新的文献求助10
10秒前
10秒前
斯文败类应助DYZ采纳,获得10
10秒前
11发布了新的文献求助30
11秒前
肯德大厨完成签到 ,获得积分10
11秒前
jojo完成签到 ,获得积分10
11秒前
11秒前
12秒前
Owen应助lixxx采纳,获得10
12秒前
高山流水应助Makta采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5653573
求助须知:如何正确求助?哪些是违规求助? 4790162
关于积分的说明 15064753
捐赠科研通 4812180
什么是DOI,文献DOI怎么找? 2574341
邀请新用户注册赠送积分活动 1529955
关于科研通互助平台的介绍 1488680