Defects engineered 2D ultrathin cobalt hydroxide nanosheets as highly efficient electrocatalyst for non-enzymatic electrochemical sensing of glucose and l-cysteine

电催化剂 氢氧化钴 电化学 生物传感器 材料科学 检出限 二硫化钼 纳米技术 生物分子 化学 线性范围 纳米材料 化学工程 无机化学 组合化学 电极 物理化学 工程类 色谱法 冶金
作者
Paramasivam Balasubramanian,Shao‐Bin He,Hao‐Hua Deng,Hua‐Ping Peng,Wei Chen
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:320: 128374-128374 被引量:52
标识
DOI:10.1016/j.snb.2020.128374
摘要

Engineering of nanomaterials with atomic defects has becoming an effective way to boost the sensitivity of the electrochemical biosensors but challenging. Herein, a rational, facile and in-situ strategy has been reported to obtain cobalt hydroxide nanosheets (VCo-Co(OH)2) with abundant cobalt vacancies. The cobalt defects greatly enriched electroactive sites and charge transfer rates, thereby delivered excellent electrocatalytic oxidation performance towards glucose and l-cysteine. The dynamic range and low limit of detection of glucose at VCo-Co(OH)2 electrodes were found as 0.4 μM–8.23 mM and 295 nM respectively. Besides, VCo-Co(OH)2 electrodes accurately sensed the l-cysteine with lowest detection limit (76.5 nM), and broad linear sensing range (200 nM-1.94 mM), which are better than the performance of defect-free Co(OH)2 electrodes, evidence that construction of cobalt vacancy significantly boosted the electrocatalysis. Importantly, fabricated sensors had excellent interference immunity against the many biomolecules, owns good stability and reproducibility. Present work not only proposed a novel and simplistic approach to prepare the metal hydroxides with copious metal cation vacancies for electrocatalysis but also provides economical, precise, high-sensitive and disposable biosensors for clinical analysis glucose and l-cysteine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
2秒前
Duckseid发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
Ava应助杨潇丶丶采纳,获得10
4秒前
4秒前
4秒前
抹茶发布了新的文献求助10
5秒前
fantasy完成签到,获得积分20
5秒前
ZYY完成签到,获得积分20
5秒前
5秒前
HWL完成签到,获得积分10
6秒前
桃子e发布了新的文献求助10
6秒前
wangli发布了新的文献求助10
6秒前
6秒前
6秒前
llj完成签到,获得积分10
6秒前
木木 12完成签到,获得积分10
6秒前
小半仙发布了新的文献求助10
7秒前
7秒前
7秒前
懒得理完成签到 ,获得积分10
7秒前
体贴半仙完成签到,获得积分20
7秒前
yu完成签到,获得积分10
8秒前
科研通AI6应助中微子采纳,获得10
8秒前
赘婿应助Quentin9998采纳,获得10
8秒前
酷波er应助dongjingbutaire采纳,获得10
8秒前
猪猪猪发布了新的文献求助10
8秒前
研友_8y2G0L发布了新的文献求助30
8秒前
牟若溪发布了新的文献求助10
8秒前
内向玉兰完成签到,获得积分10
9秒前
夜星子发布了新的文献求助10
9秒前
务实的手套完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667927
求助须知:如何正确求助?哪些是违规求助? 4888141
关于积分的说明 15122164
捐赠科研通 4826686
什么是DOI,文献DOI怎么找? 2584281
邀请新用户注册赠送积分活动 1538179
关于科研通互助平台的介绍 1496440