巨噬细胞极化
糖酵解
肌发生
巨噬细胞
细胞生物学
再生(生物学)
调节器
祖细胞
骨骼肌
内科学
血管生成
缺血
生物
内分泌学
医学
生物化学
新陈代谢
癌症研究
干细胞
体外
基因
作者
Jing Zhang,Jonathan Muri,Gillian Fitzgerald,Tatiane Gorski,Roberto Giannì-Barrera,Evi Masschelein,Gommaar D’Hulst,Paola Gilardoni,Guillermo Turiel,Zheng Fan,Tongtong Wang,Mélanie Planque,Peter Carmeliet,Luc Pellerin,Christian Wolfrum,Sarah‐Maria Fendt,Andrea Banfi,Christian Stockmann,Inés Soro-Arnáiz,Manfred Köpf,Katrien De Bock
出处
期刊:Cell Metabolism
[Elsevier]
日期:2020-06-01
卷期号:31 (6): 1136-1153.e7
被引量:282
标识
DOI:10.1016/j.cmet.2020.05.004
摘要
Endothelial cell (EC)-derived signals contribute to organ regeneration, but angiocrine metabolic communication is not described. We found that EC-specific loss of the glycolytic regulator pfkfb3 reduced ischemic hindlimb revascularization and impaired muscle regeneration. This was caused by the reduced ability of macrophages to adopt a proangiogenic and proregenerative M2-like phenotype. Mechanistically, loss of pfkfb3 reduced lactate secretion by ECs and lowered lactate levels in the ischemic muscle. Addition of lactate to pfkfb3-deficient ECs restored M2-like polarization in an MCT1-dependent fashion. Lactate shuttling by ECs enabled macrophages to promote proliferation and fusion of muscle progenitors. Moreover, VEGF production by lactate-polarized macrophages was increased, resulting in a positive feedback loop that further stimulated angiogenesis. Finally, increasing lactate levels during ischemia rescued macrophage polarization and improved muscle reperfusion and regeneration, whereas macrophage-specific mct1 deletion prevented M2-like polarization. In summary, ECs exploit glycolysis for angiocrine lactate shuttling to steer muscle regeneration from ischemia.
科研通智能强力驱动
Strongly Powered by AbleSci AI