Structure–Property Correlation Study for Organic Photovoltaic Polymer Materials Using Data Science Approach

管道(软件) 材料科学 光伏系统 聚合物 背景(考古学) 工作流程 计算机科学 财产(哲学) 纳米技术 数据库 工程类 电气工程 程序设计语言 复合材料 古生物学 哲学 认识论 生物
作者
Yue Huang,Jingtian Zhang,Edwin S. Jiang,Yutaka Oya,Akinori Saeki,Gota Kikugawa,Tomonaga Okabe,Fumio S. Ohuchi
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (24): 12871-12882 被引量:28
标识
DOI:10.1021/acs.jpcc.0c00517
摘要

A study workflow that utilizes several data science methods to apply on polymer materials databases is introduced to reveal correlations among their properties, structural information, and molecular descriptors. The data science methods used in this pipeline include the unsupervised machine learning (ML) method of self-organizing mapping (SOM) and the polymer molecular descriptor generator, both of which have been tailored to fit the polymer materials study. To demonstrate how this pipeline can be applied in this context, we used it on an organic photovoltaic (OPV) donor polymer database to investigate which properties or structural factors positively correlate with the power conversion efficiency (PCE) of OPV materials. This led us to discover that among the studied 8 properties and 11 molecular descriptors, only the photon energy loss (Eloss) and the number of fluorine atoms (nF) show strong positive correlations with PCE values, which is consistent with other verified studies. We also discovered that research trends can also be statistically visualized using our method. In our case study, we found that most of the studied OPV donor materials in the database have branched side chains and typically 7–12 non-hydrogen atoms, and high PCE materials usually have 6–9 aromatics rings as well. These results proved that the data science pipeline proposed in this study provides a fast and effective way to obtain research insights for polymer materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
强健的迎波完成签到,获得积分10
1秒前
赘婿应助Torrance采纳,获得10
2秒前
hala安胖胖发布了新的文献求助10
2秒前
2秒前
慕青应助RMgX采纳,获得10
2秒前
huxx完成签到,获得积分10
2秒前
开开心心做科研应助Shaewei采纳,获得30
3秒前
4秒前
mindi完成签到,获得积分10
4秒前
4秒前
今后应助byumi采纳,获得10
5秒前
5秒前
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
orixero应助科研通管家采纳,获得10
5秒前
蓝天应助科研通管家采纳,获得10
5秒前
上官若男应助科研通管家采纳,获得10
5秒前
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
浮游应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
孤独的宛应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得30
6秒前
Adler应助科研通管家采纳,获得10
6秒前
6秒前
7秒前
苏比努尔发布了新的文献求助10
7秒前
ang完成签到,获得积分20
7秒前
10秒前
欣慰的盼芙完成签到,获得积分10
10秒前
11秒前
11秒前
隐形曼青应助耍酷的千愁采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649603
求助须知:如何正确求助?哪些是违规求助? 4778715
关于积分的说明 15049374
捐赠科研通 4808630
什么是DOI,文献DOI怎么找? 2571661
邀请新用户注册赠送积分活动 1528083
关于科研通互助平台的介绍 1486851