Structure–Property Correlation Study for Organic Photovoltaic Polymer Materials Using Data Science Approach

管道(软件) 材料科学 光伏系统 聚合物 背景(考古学) 工作流程 计算机科学 财产(哲学) 纳米技术 数据库 工程类 认识论 电气工程 哲学 古生物学 复合材料 生物 程序设计语言
作者
Yue Huang,Jingtian Zhang,Edwin S. Jiang,Yutaka Oya,Akinori Saeki,Gota Kikugawa,Tomonaga Okabe,Fumio S. Ohuchi
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:124 (24): 12871-12882 被引量:28
标识
DOI:10.1021/acs.jpcc.0c00517
摘要

A study workflow that utilizes several data science methods to apply on polymer materials databases is introduced to reveal correlations among their properties, structural information, and molecular descriptors. The data science methods used in this pipeline include the unsupervised machine learning (ML) method of self-organizing mapping (SOM) and the polymer molecular descriptor generator, both of which have been tailored to fit the polymer materials study. To demonstrate how this pipeline can be applied in this context, we used it on an organic photovoltaic (OPV) donor polymer database to investigate which properties or structural factors positively correlate with the power conversion efficiency (PCE) of OPV materials. This led us to discover that among the studied 8 properties and 11 molecular descriptors, only the photon energy loss (Eloss) and the number of fluorine atoms (nF) show strong positive correlations with PCE values, which is consistent with other verified studies. We also discovered that research trends can also be statistically visualized using our method. In our case study, we found that most of the studied OPV donor materials in the database have branched side chains and typically 7–12 non-hydrogen atoms, and high PCE materials usually have 6–9 aromatics rings as well. These results proved that the data science pipeline proposed in this study provides a fast and effective way to obtain research insights for polymer materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kingmantj发布了新的文献求助10
刚刚
1秒前
还不错的橙子完成签到,获得积分10
1秒前
爆米花应助苒ran采纳,获得10
3秒前
3秒前
静默向上发布了新的文献求助10
4秒前
5秒前
5秒前
小凉发布了新的文献求助10
6秒前
7秒前
怕黑的静蕾应助芭娜55采纳,获得10
8秒前
smile发布了新的文献求助30
8秒前
9秒前
怕黑的静蕾应助树袋采纳,获得10
9秒前
风趣小蜜蜂完成签到,获得积分10
9秒前
momo发布了新的文献求助10
10秒前
huiyuan完成签到,获得积分10
11秒前
Orange应助smile采纳,获得30
12秒前
12秒前
七熵完成签到 ,获得积分0
13秒前
13秒前
14秒前
15秒前
GQL发布了新的文献求助10
15秒前
飘逸小懒猪应助hg采纳,获得10
15秒前
16秒前
16秒前
Akinmide完成签到 ,获得积分10
16秒前
静默向上完成签到,获得积分10
17秒前
FDY发布了新的文献求助10
17秒前
18秒前
18秒前
小唐完成签到,获得积分10
18秒前
19秒前
zhang完成签到,获得积分10
19秒前
20秒前
Lin发布了新的文献求助10
21秒前
22秒前
aaaaaa发布了新的文献求助10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512116
关于积分的说明 11161791
捐赠科研通 3246949
什么是DOI,文献DOI怎么找? 1793633
邀请新用户注册赠送积分活动 874509
科研通“疑难数据库(出版商)”最低求助积分说明 804420