Characteristics and Superposition Regularity of Aliasing Signal of an Inductive Debris Sensor Based on a High-Gradient Magnetic Field

混叠 信号(编程语言) 波形 叠加原理 声学 碎片 材料科学 电压 计算机科学 物理 工程类 电气工程 滤波器(信号处理) 气象学 量子力学 程序设计语言
作者
Xinyu Wang,Ping Chen,Jiufei Luo,Leilei Yang,Song Feng
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:20 (17): 10071-10078 被引量:14
标识
DOI:10.1109/jsen.2020.2992110
摘要

The detection of wear condition is critical for the prediction of mechanical equipment failure and the avoidance of catastrophic accidents. A large-diameter inductive debris detection sensor was previously presented to satisfy the requirement of high throughput, and the characteristics of induced voltage generated by single debris were analyzed. However, in practice, plenty of wear particles carried by lubricant flowing through the sensors probably form the aliasing signal, thus affecting the evaluation of concentration and size of particles. In order to analyze the mechanism of aliasing, this paper studies the influence of the motion state of wear debris, such as velocity, relative spatial position and trajectory, on the waveform of the aliasing induction signal. The experimental results show that the aliasing induced voltage is proportional to the debris velocity and magnetic induction intensity. Additionally, the voltage peak-peak of aliasing signal is approximately proportional to the radius of the debris instead of the volume, from which the relational expression about the aliasing signal and component singles derives. Finally, the theoretical results and experimental results are performed to validate this relation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
222关闭了222文献求助
1秒前
chinh完成签到,获得积分10
1秒前
钮祜禄废废完成签到,获得积分10
1秒前
1秒前
曾经富完成签到,获得积分10
3秒前
酷酷海豚完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
5秒前
青青完成签到 ,获得积分10
7秒前
Chan0501发布了新的文献求助10
7秒前
昭昭完成签到,获得积分10
8秒前
SCI发布了新的文献求助10
8秒前
卓然完成签到,获得积分10
8秒前
李来仪发布了新的文献求助10
9秒前
10秒前
菲菲呀完成签到,获得积分10
10秒前
Rrr发布了新的文献求助10
10秒前
12秒前
陌路完成签到,获得积分10
12秒前
善学以致用应助leon采纳,获得30
12秒前
13秒前
斯文败类应助嘻嘻采纳,获得10
13秒前
科研通AI5应助小只bb采纳,获得30
13秒前
yyyy发布了新的文献求助10
13秒前
2023AKY完成签到,获得积分10
15秒前
15秒前
16秒前
16秒前
彭于晏应助惠惠采纳,获得10
16秒前
风魂剑主完成签到,获得积分10
17秒前
yryzst9899发布了新的文献求助10
17秒前
18秒前
飘逸小笼包完成签到,获得积分10
18秒前
科研小郑完成签到,获得积分10
18秒前
CipherSage应助熊boy采纳,获得10
18秒前
XXGG完成签到 ,获得积分10
19秒前
大个应助舒心赛凤采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794