LC–MS/MS analysis of twelve neurotransmitters and amino acids in mouse cerebrospinal fluid

脑脊液 衍生化 化学 组胺 开阔地 高香草酸 多巴胺 代谢物 神经科学 谷氨酸受体 氨基酸 神经递质 血清素 色谱法 生物化学 药理学 质谱法 生物 内分泌学 受体
作者
María Encarnación Blanco,Olga Barca‐Mayo,Tiziano Bandiera,Davide De Pietri Tonelli,Andrea Armirotti
出处
期刊:Journal of Neuroscience Methods [Elsevier]
卷期号:341: 108760-108760 被引量:16
标识
DOI:10.1016/j.jneumeth.2020.108760
摘要

So far, analytical investigation of neuroactive molecules in cerebrospinal fluid (CSF) of rodent models has been limited to rats, given the intrinsic anatomic difficulties related to mice sampling and the corresponding tiny amounts of CSF obtained. This poses a challenge for the research in neuroscience, where many, if not most, animal models for neuronal disorders rely on mice. We introduce a new, sensitive and robust LC–MS/MS method to analyze a panel of twelve neuroactive molecules (NM) from mouse CSF (aspartic acid, serine, glycine, glutamate, γ-aminobutyric acid, norepinephrine, epinephrine, acetylcholine, dopamine, serotonin, histamine and its metabolite 1-metylhistamine). The paper describes the sampling procedure that allows the collection of 1−2 microliters of pure CSF from individual mouse specimens. To test its applicability, we challenged our method on the field, by sampling 37 individual animals, thus demonstrating its strength and reliability. Compared to other methods, our procedure does not involve any extraction nor derivatization steps: samples are simply diluted and analyzed as such by LC–MS/MS, using a dedicated ion pairing agent in the chromatographic setup. The panel of neuroactive molecules that is analyzed in a single run is also significantly higher compared to other methods. Given the number of mouse models used in the neuroscience research, we believe that our work will pave new ways to more advanced research in this field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
研友_VZG7GZ应助兜兜采纳,获得10
2秒前
3秒前
3秒前
优雅鹏煊完成签到,获得积分10
4秒前
5秒前
Mayday完成签到,获得积分10
6秒前
乐观芷蕊发布了新的文献求助10
6秒前
妮妮完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
单纯手套111完成签到,获得积分10
6秒前
赘婿应助brucehekai采纳,获得10
6秒前
7秒前
Gusta发布了新的文献求助10
7秒前
8秒前
风中夜天完成签到 ,获得积分10
9秒前
JamesPei应助lufei采纳,获得10
9秒前
9秒前
桐桐应助ju龙哥采纳,获得10
9秒前
孙行者完成签到,获得积分10
9秒前
Lucas应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
cocolu应助科研通管家采纳,获得10
10秒前
10秒前
情怀应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得30
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
dty发布了新的文献求助10
11秒前
细心悟空发布了新的文献求助10
11秒前
11秒前
小豆子完成签到 ,获得积分10
12秒前
tobenol发布了新的文献求助10
13秒前
jiayou完成签到,获得积分10
13秒前
14秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3334604
求助须知:如何正确求助?哪些是违规求助? 2963829
关于积分的说明 8611528
捐赠科研通 2642741
什么是DOI,文献DOI怎么找? 1446956
科研通“疑难数据库(出版商)”最低求助积分说明 670445
邀请新用户注册赠送积分活动 658656