随机微积分
莱维过程
鞅(概率论)
随机过程
数学证明
牙石(牙科)
数学
应用数学
Malliavin微积分
时间尺度微积分
纯数学
多元微积分
数学分析
随机偏微分方程
医学
微分方程
统计
工程类
控制工程
牙科
几何学
标识
DOI:10.1017/cbo9780511809781
摘要
Lévy processes form a wide and rich class of random process, and have many applications ranging from physics to finance. Stochastic calculus is the mathematics of systems interacting with random noise. Here, the author ties these two subjects together, beginning with an introduction to the general theory of Lévy processes, then leading on to develop the stochastic calculus for Lévy processes in a direct and accessible way. This fully revised edition now features a number of new topics. These include: regular variation and subexponential distributions; necessary and sufficient conditions for Lévy processes to have finite moments; characterisation of Lévy processes with finite variation; Kunita's estimates for moments of Lévy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Lévy processes; multiple Wiener-Lévy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Lévy-driven SDEs.
科研通智能强力驱动
Strongly Powered by AbleSci AI