已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Comparison of MRI and CT for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma Based on a Non‐Radiomics and Radiomics Method: Which Imaging Modality Is Better?

医学 磁共振成像 肝细胞癌 接收机工作特性 单变量 放射科 无线电技术 逻辑回归 核医学 单变量分析 多元统计 多元分析 内科学 计算机科学 机器学习
作者
Xiangpan Meng,Yuancheng Wang,Jiaying Zhou,Yu Qian,Chun‐Qiang Lu,Cong Xia,Tianyu Tang,Jiajia Xu,Ke Sun,Wenbo Xiao,Shenghong Ju
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:54 (2): 526-536 被引量:37
标识
DOI:10.1002/jmri.27575
摘要

Background Computed tomography (CT) and magnetic resonance imaging (MRI) are both capable of predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC). However, which modality is better is unknown. Purpose To intraindividually compare CT and MRI for predicting MVI in solitary HCC and investigate the added value of radiomics analyses. Study Type Retrospective. Subjects Included were 402 consecutive patients with HCC (training set:validation set = 300:102). Field Strength/Sequence T2‐weighted, diffusion‐weighted, and contrast‐enhanced T1‐weighted imaging MRI at 3.0T and contrast‐enhanced CT. Assessment CT‐ and MR‐based radiomics signatures (RS) were constructed using the least absolute shrinkage and selection operator regression. CT‐ and MR‐based radiologic (R) and radiologic‐radiomics (RR) models were developed by univariate and multivariate logistic regression. The performance of the RS/models was compared between two modalities. To investigate the added value of RS, the performance of the R models was compared with the RR models in HCC of all sizes and 2–5 cm in size. Statistical Tests Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared using the Delong test. Results Histopathologic MVI was identified in 161 patients (training set:validation set = 130:31). MRI‐based RS/models tended to have a marginally higher AUC than CT‐based RS/models (AUCs of CT vs. MRI, P : RS, 0.801 vs. 0.804, 0.96; R model, 0.809 vs. 0.832, 0.09; RR model, 0.835 vs. 0.872, 0.54). The improvement of RR models over R models in all sizes was not significant ( P = 0.21 at CT and 0.09 at MRI), whereas the improvement in 2–5 cm was significant at MRI ( P < 0.05) but not at CT ( P = 0.16). Data Conclusion CT and MRI had a comparable predictive performance for MVI in solitary HCC. The RS of MRI only had significant added value for predicting MVI in HCC of 2–5 cm. Level of Evidence 3 Technical Efficacy Stage 2
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiang完成签到 ,获得积分10
刚刚
一介书生发布了新的文献求助10
1秒前
北风语完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
4秒前
4秒前
Hwchaodoctor完成签到,获得积分10
4秒前
默默含卉发布了新的文献求助30
5秒前
5秒前
jiejie321发布了新的文献求助10
6秒前
7秒前
852应助wuji采纳,获得10
7秒前
科研新兵完成签到 ,获得积分10
7秒前
古日方原发布了新的文献求助10
8秒前
毛竹完成签到,获得积分10
10秒前
10秒前
11秒前
十七完成签到,获得积分10
11秒前
Yanning完成签到,获得积分10
12秒前
ccm应助科研通管家采纳,获得10
12秒前
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
MchemG应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
13秒前
科研新兵关注了科研通微信公众号
13秒前
斯文败类应助研友LwklKL采纳,获得50
13秒前
毛竹发布了新的文献求助10
14秒前
牛牛牛完成签到,获得积分10
15秒前
15秒前
JamesPei应助默默含卉采纳,获得30
15秒前
bkagyin应助心信鑫采纳,获得30
15秒前
17秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
桐桐应助端庄的乐枫采纳,获得10
21秒前
ZHI发布了新的文献求助10
22秒前
动听的雪卉完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469657
求助须知:如何正确求助?哪些是违规求助? 4572650
关于积分的说明 14336604
捐赠科研通 4499505
什么是DOI,文献DOI怎么找? 2465100
邀请新用户注册赠送积分活动 1453653
关于科研通互助平台的介绍 1428141