亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Surface Defects Detection Using Non-convex Total Variation Regularized RPCA With Kernelization

稳健主成分分析 人工智能 稳健性(进化) 计算机科学 模式识别(心理学) 离群值 核(代数) 核化 子空间拓扑 主成分分析 数学 算法 参数化复杂度 生物化学 基因 组合数学 化学
作者
Junpu Wang,Guili Xu,Chunlei Li,Zhengsheng Wang,Fuju Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:17
标识
DOI:10.1109/tim.2021.3056738
摘要

Surface defects have an adverse effect on the quality of industrial products, and vision-based defect detection is widely researched due to its objective and stable performance. However, the task is still challenging due to diversified defect types and complex background texture. The robust principal component analysis (RPCA) has proven applicable in defect inspection by regarding nondefective background as the low-rank part and defective area as the sparse part. However, such methods cannot sufficiently detect defects due to complex cluttered background, noise interference, and limited features available. To address these issues, in this article, we proposed an unsupervised surface defect detection method based on nonconvex total variation (TV) regularized RPCA with kernelization, named KRPCA-NTV. Specifically, the kernel method is integrated into RPCA to better handle complex cluttered background lying in a nonstrict low-rank subspace. Furthermore, nonconvex TV regularization is introduced to prevent the noise pixel from being separated into the defect region; meanwhile, nonconvex optimization promotes higher solution accuracy. In addition, the kernel canonical correlation analysis (KCCA) is utilized to fuse complementary features for boosting feature representation ability. To demonstrate the superiority and robustness of the proposed method, we compare it with the state of the art on five defect data sets; the results show that the proposed method outperforms competing methods in terms of accuracy and generalizability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助一_采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
13秒前
19秒前
一_发布了新的文献求助10
24秒前
Lucas应助一_采纳,获得10
54秒前
1分钟前
1分钟前
一_发布了新的文献求助10
1分钟前
1分钟前
羫孔发布了新的文献求助10
1分钟前
1分钟前
体贴花卷发布了新的文献求助10
1分钟前
1分钟前
羫孔发布了新的文献求助10
2分钟前
李健的小迷弟应助一_采纳,获得10
2分钟前
2分钟前
科研通AI2S应助体贴花卷采纳,获得10
2分钟前
2分钟前
2分钟前
Marciu33发布了新的文献求助10
2分钟前
一_发布了新的文献求助10
2分钟前
松松松茸关注了科研通微信公众号
2分钟前
一_完成签到,获得积分10
2分钟前
123456xq完成签到 ,获得积分10
2分钟前
酷波er应助松松松茸采纳,获得10
3分钟前
Eason完成签到,获得积分10
3分钟前
xiazhq完成签到,获得积分10
3分钟前
松松松茸完成签到,获得积分10
3分钟前
3分钟前
松松松茸发布了新的文献求助10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
hugeyoung发布了新的文献求助10
4分钟前
打打应助hugeyoung采纳,获得10
4分钟前
hugeyoung完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314398
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531258
捐赠科研通 2622396
什么是DOI,文献DOI怎么找? 1434493
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881