已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Surface Defects Detection Using Non-convex Total Variation Regularized RPCA With Kernelization

稳健主成分分析 人工智能 稳健性(进化) 计算机科学 模式识别(心理学) 离群值 核(代数) 核化 子空间拓扑 主成分分析 数学 算法 参数化复杂度 生物化学 化学 组合数学 基因
作者
Junpu Wang,Guili Xu,Chunlei Li,Zhengsheng Wang,Fuju Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:17
标识
DOI:10.1109/tim.2021.3056738
摘要

Surface defects have an adverse effect on the quality of industrial products, and vision-based defect detection is widely researched due to its objective and stable performance. However, the task is still challenging due to diversified defect types and complex background texture. The robust principal component analysis (RPCA) has proven applicable in defect inspection by regarding nondefective background as the low-rank part and defective area as the sparse part. However, such methods cannot sufficiently detect defects due to complex cluttered background, noise interference, and limited features available. To address these issues, in this article, we proposed an unsupervised surface defect detection method based on nonconvex total variation (TV) regularized RPCA with kernelization, named KRPCA-NTV. Specifically, the kernel method is integrated into RPCA to better handle complex cluttered background lying in a nonstrict low-rank subspace. Furthermore, nonconvex TV regularization is introduced to prevent the noise pixel from being separated into the defect region; meanwhile, nonconvex optimization promotes higher solution accuracy. In addition, the kernel canonical correlation analysis (KCCA) is utilized to fuse complementary features for boosting feature representation ability. To demonstrate the superiority and robustness of the proposed method, we compare it with the state of the art on five defect data sets; the results show that the proposed method outperforms competing methods in terms of accuracy and generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一111完成签到,获得积分20
1秒前
朴素寻冬发布了新的文献求助10
7秒前
11秒前
Tumumu完成签到,获得积分10
13秒前
花痴的易真完成签到,获得积分10
16秒前
16秒前
研友_nEWRJ8完成签到,获得积分10
18秒前
YanZhe完成签到,获得积分10
20秒前
聪慧芷巧发布了新的文献求助10
24秒前
颢懿完成签到 ,获得积分10
25秒前
思源应助小狗采纳,获得10
27秒前
Tendency完成签到 ,获得积分10
28秒前
33秒前
快乐排骨汤完成签到 ,获得积分10
33秒前
CipherSage应助yyds采纳,获得10
35秒前
展七完成签到,获得积分10
39秒前
打打应助展七采纳,获得10
42秒前
超级小熊猫完成签到 ,获得积分10
42秒前
糯米糍完成签到,获得积分10
43秒前
lwm不想看文献完成签到 ,获得积分10
44秒前
没有昵称发布了新的文献求助10
47秒前
量子星尘发布了新的文献求助10
48秒前
无问完成签到,获得积分10
51秒前
斯文败类应助斯文啊斯文采纳,获得10
52秒前
Hello应助蚂蚁Y嘿采纳,获得10
57秒前
早睡能长个完成签到,获得积分10
59秒前
cc应助科研通管家采纳,获得10
1分钟前
Magali应助科研通管家采纳,获得30
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
HOO发布了新的文献求助10
1分钟前
Seciy完成签到 ,获得积分10
1分钟前
如意的芷天完成签到,获得积分10
1分钟前
李李李李李完成签到,获得积分10
1分钟前
斯文啊斯文完成签到,获得积分20
1分钟前
Mulee完成签到,获得积分20
1分钟前
壮观的谷冬完成签到 ,获得积分10
1分钟前
AFM完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959971
求助须知:如何正确求助?哪些是违规求助? 3506216
关于积分的说明 11128425
捐赠科研通 3238197
什么是DOI,文献DOI怎么找? 1789577
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042