Surface Defects Detection Using Non-convex Total Variation Regularized RPCA With Kernelization

稳健主成分分析 人工智能 稳健性(进化) 计算机科学 模式识别(心理学) 离群值 核(代数) 核化 子空间拓扑 主成分分析 数学 算法 参数化复杂度 生物化学 基因 组合数学 化学
作者
Junpu Wang,Guili Xu,Chunlei Li,Zhengsheng Wang,Fuju Yan
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:17
标识
DOI:10.1109/tim.2021.3056738
摘要

Surface defects have an adverse effect on the quality of industrial products, and vision-based defect detection is widely researched due to its objective and stable performance. However, the task is still challenging due to diversified defect types and complex background texture. The robust principal component analysis (RPCA) has proven applicable in defect inspection by regarding nondefective background as the low-rank part and defective area as the sparse part. However, such methods cannot sufficiently detect defects due to complex cluttered background, noise interference, and limited features available. To address these issues, in this article, we proposed an unsupervised surface defect detection method based on nonconvex total variation (TV) regularized RPCA with kernelization, named KRPCA-NTV. Specifically, the kernel method is integrated into RPCA to better handle complex cluttered background lying in a nonstrict low-rank subspace. Furthermore, nonconvex TV regularization is introduced to prevent the noise pixel from being separated into the defect region; meanwhile, nonconvex optimization promotes higher solution accuracy. In addition, the kernel canonical correlation analysis (KCCA) is utilized to fuse complementary features for boosting feature representation ability. To demonstrate the superiority and robustness of the proposed method, we compare it with the state of the art on five defect data sets; the results show that the proposed method outperforms competing methods in terms of accuracy and generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助魔幻的从梦采纳,获得10
刚刚
1秒前
雪鸽鸽发布了新的文献求助10
1秒前
2秒前
3秒前
3秒前
4秒前
科研通AI5应助朱一龙采纳,获得30
5秒前
SharonDu完成签到 ,获得积分10
6秒前
ayin完成签到,获得积分10
6秒前
7秒前
7秒前
啦啦啦完成签到,获得积分10
7秒前
coffee发布了新的文献求助10
8秒前
8秒前
科研混子发布了新的文献求助10
8秒前
咿咿呀呀发布了新的文献求助10
8秒前
酷酷碧发布了新的文献求助10
10秒前
飘逸宛丝完成签到,获得积分10
11秒前
qzaima发布了新的文献求助10
11秒前
米酒完成签到,获得积分10
13秒前
step_stone给step_stone的求助进行了留言
13秒前
乐乐应助ayin采纳,获得10
14秒前
无花果应助hhh采纳,获得10
16秒前
叁壹粑粑完成签到,获得积分10
17秒前
酷酷碧完成签到,获得积分10
17秒前
18秒前
磕盐民工完成签到,获得积分10
19秒前
19秒前
忘羡222发布了新的文献求助20
19秒前
我是老大应助TT采纳,获得10
21秒前
21秒前
21秒前
雪鸽鸽完成签到,获得积分10
22秒前
完美世界应助开心青旋采纳,获得10
22秒前
LD完成签到 ,获得积分10
24秒前
xjy完成签到 ,获得积分10
24秒前
qzaima完成签到,获得积分10
24秒前
25秒前
xueshufengbujue完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824