Marrying Stochastic Gradient Descent with Bandits: Learning Algorithms for Inventory Systems with Fixed Costs

后悔 凸性 数学优化 计算机科学 水准点(测量) 先验与后验 对数 钥匙(锁) 数学 经济 机器学习 数学分析 哲学 计算机安全 大地测量学 认识论 金融经济学 地理
作者
Hao Yuan,Qi Luo,Cong Shi
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:67 (10): 6089-6115 被引量:58
标识
DOI:10.1287/mnsc.2020.3799
摘要

We consider a periodic-review single-product inventory system with fixed cost under censored demand. Under full demand distributional information, it is well known that the celebrated (s, S) policy is optimal. In this paper, we assume the firm does not know the demand distribution a priori and makes adaptive inventory ordering decisions in each period based only on the past sales (a.k.a. censored demand). Our performance measure is regret, which is the cost difference between a feasible learning algorithm and the clairvoyant (full-information) benchmark. Compared with prior literature, the key difficulty of this problem lies in the loss of joint convexity of the objective function as a result of the presence of fixed cost. We develop the first learning algorithm, termed the [Formula: see text] policy, that combines the power of stochastic gradient descent, bandit controls, and simulation-based methods in a seamless and nontrivial fashion. We prove that the cumulative regret is [Formula: see text], which is provably tight up to a logarithmic factor. We also develop several technical results that are of independent interest. We believe that the developed framework could be widely applied to learning other important stochastic systems with partial convexity in the objectives. This paper was accepted by Chung Piaw Teo, optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助努力摆烂采纳,获得10
刚刚
偷乐发布了新的文献求助10
刚刚
笨笨伟泽发布了新的文献求助10
3秒前
峰宝宝完成签到,获得积分10
3秒前
打打应助Junex采纳,获得30
3秒前
ryan发布了新的文献求助10
4秒前
5秒前
方勇飞发布了新的文献求助20
5秒前
XHS完成签到,获得积分10
5秒前
甜甜的南莲完成签到,获得积分10
6秒前
v321完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
闪shan完成签到,获得积分10
9秒前
科研通AI5应助袁衣采纳,获得30
9秒前
9秒前
cy关闭了cy文献求助
9秒前
威威12完成签到,获得积分10
11秒前
stretchability完成签到,获得积分10
12秒前
ANXU发布了新的文献求助10
12秒前
v321发布了新的文献求助10
12秒前
无奈芮完成签到,获得积分10
12秒前
13秒前
SYLH应助nobody采纳,获得10
14秒前
14秒前
hey发布了新的文献求助30
14秒前
猪猪hero应助聪明铅笔采纳,获得10
15秒前
打打应助轻松傲薇采纳,获得10
15秒前
17秒前
17秒前
情怀应助方勇飞采纳,获得10
17秒前
17秒前
ABCDEFG发布了新的文献求助10
18秒前
英俊的铭应助yxx采纳,获得10
18秒前
18秒前
ALU完成签到 ,获得积分10
18秒前
19秒前
一一完成签到 ,获得积分10
20秒前
贝儿发布了新的文献求助10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732051
求助须知:如何正确求助?哪些是违规求助? 3276417
关于积分的说明 9996913
捐赠科研通 2991929
什么是DOI,文献DOI怎么找? 1641951
邀请新用户注册赠送积分活动 780017
科研通“疑难数据库(出版商)”最低求助积分说明 748677