亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structural damage identification via physics-guided machine learning: a methodology integrating pattern recognition with finite element model updating

有限元法 结构健康监测 人工神经网络 鉴定(生物学) 人工智能 一致性(知识库) 机器学习 计算机科学 特征(语言学) 功能(生物学) 工程类 进化生物学 生物 结构工程 植物 哲学 语言学
作者
Zhiming Zhang,Chao Sun
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (4): 1675-1688 被引量:134
标识
DOI:10.1177/1475921720927488
摘要

Structural health monitoring methods are broadly classified into two categories: data-driven methods via statistical pattern recognition and physics-based methods through finite elementmodel updating. Data-driven structural health monitoring faces the challenge of data insufficiency that renders the learned model limited in identifying damage scenarios that are not contained in the training data. Model-based methods are susceptible to modeling error due to model idealizations and simplifications that make the finite element model updating results deviate from the truth. This study attempts to combine the merits of data-driven and physics-based structural health monitoring methods via physics-guided machine learning, expecting that the damage identification performance can be improved. Physics-guided machine learning uses observed feature data with correct labels as well as the physical model output of unlabeled instances. In this study, physics-guided machine learning is realized with a physics-guided neural network. The original modal-property based features are extended with the damage identification result of finite element model updating. A physics-based loss function is designed to evaluate the discrepancy between the neural network model output and that of finite element model updating. With the guidance from the scientific knowledge contained in finite element model updating, the learned neural network model has the potential to improve the generality and scientific consistency of the damage detection results. The proposed methodology is validated by a numerical case study on a steel pedestrian bridge model and an experimental study on a three-story building model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zn0103完成签到 ,获得积分10
8秒前
丘比特应助科研通管家采纳,获得10
25秒前
赵毓萱应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
LHS完成签到,获得积分10
26秒前
John完成签到,获得积分10
28秒前
粽子完成签到,获得积分10
32秒前
33秒前
负责剑心发布了新的文献求助10
37秒前
加菲丰丰举报求助违规成功
46秒前
杭子轩举报求助违规成功
46秒前
Jason举报求助违规成功
46秒前
46秒前
负责剑心完成签到,获得积分10
1分钟前
董董完成签到 ,获得积分10
1分钟前
1分钟前
熹微发布了新的文献求助10
1分钟前
1分钟前
喜喜发布了新的文献求助10
1分钟前
思源应助dahai采纳,获得10
2分钟前
zzyh307完成签到 ,获得积分0
2分钟前
FashionBoy应助兴奋元冬采纳,获得30
2分钟前
2分钟前
熹微发布了新的文献求助10
3分钟前
meier1206完成签到,获得积分10
3分钟前
3分钟前
meier1206发布了新的文献求助10
3分钟前
科研通AI5应助科研通管家采纳,获得10
4分钟前
樱花喵完成签到,获得积分10
4分钟前
程新亮完成签到 ,获得积分10
4分钟前
猫紫发布了新的文献求助10
4分钟前
科研通AI5应助风一样的我采纳,获得30
4分钟前
4分钟前
樱花喵发布了新的文献求助20
4分钟前
4分钟前
4分钟前
Sunny完成签到 ,获得积分10
4分钟前
bkagyin应助猫紫采纳,获得10
4分钟前
snsut发布了新的文献求助10
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Population Genetics 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3497453
求助须知:如何正确求助?哪些是违规求助? 3081956
关于积分的说明 9169888
捐赠科研通 2775181
什么是DOI,文献DOI怎么找? 1522814
邀请新用户注册赠送积分活动 706258
科研通“疑难数据库(出版商)”最低求助积分说明 703339