ADR‐Net: Context extraction network based on M‐Net for medical image segmentation

背景(考古学) 图像分割 医学影像学 网(多面体) 人工智能 萃取(化学) 分割 计算机科学 计算机视觉 图像(数学) 模式识别(心理学) 数学 地理 色谱法 考古 化学 几何学
作者
Lingyu Ji,Xiaoyan Jiang,Yongbin Gao,Zhijun Fang,Qingping Cai,Ziran Wei
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4254-4264 被引量:4
标识
DOI:10.1002/mp.14364
摘要

Purpose Medical image segmentation is an essential component of medical image analysis. Accurate segmentation can assist doctors in diagnosis and relieve their fatigue. Although several image segmentation methods based on U-Net have been proposed, their performances have been observed to be suboptimal in the case of small-sized objects. To address this shortcoming, a novel network architecture is proposed in this study to enhance segmentation performance on small medical targets. Methods In this paper, we propose a joint multi-scale context attention network architecture to simultaneously capture higher level semantic information and spatial information. In order to obtain a greater number of feature maps during decoding, the network concatenates the images of side inputs by down-sampling during the encoding phase. In the bottleneck layer of the network, dense atrous convolution (DAC) and multi-scale residual pyramid pooling (RMP) modules are exploited to better capture high-level semantic information and spatial information. To improve the segmentation performance on small targets, the attention gate (AG) block is used to effectively suppress feature activation in uncorrelated regions and highlight the target area. Results The proposed model is first evaluated on the public dataset DRIVE, on which it performs significantly better than the basic framework in terms of sensitivity (SE), intersection-over-union (IOU), and area under the receiver operating characteristic curve (AUC). In particular, the SE and IOU are observed to increase by 7.46% and 5.97%, respectively. Further, the evaluation indices exhibit improvements compared to those of state-of-the-art methods as well, with SE and IOU increasing by 3.58% and 3.26%, respectively. Additionally, in order to demonstrate the generalizability of the proposed architecture, we evaluate our model on three other challenging datasets. The respective performances are observed to be better than those of state-of-the-art network architectures on the same datasets. Moreover, we use lung segmentation as a comparative experiment to demonstrate the transferability of the advantageous properties of the proposed approach in the context of small target segmentation to the segmentation of large targets. Finally, an ablation study is conducted to investigate the individual contributions of the AG block, the DAC block, and the RMP block to the performance of the network. Conclusions The proposed method is evaluated on various datasets. Experimental results demonstrate that the proposed model performs better than state-of-the-art methods in medical image segmentation of small targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
冷暖发布了新的文献求助10
1秒前
2秒前
2秒前
暮雨完成签到,获得积分10
4秒前
SciGPT应助ebby采纳,获得10
5秒前
nyyyyyy完成签到,获得积分10
5秒前
默客发布了新的文献求助10
5秒前
ChaiHaobo完成签到,获得积分10
7秒前
暮雨发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
方班术完成签到,获得积分10
9秒前
谢文强完成签到,获得积分10
11秒前
11秒前
liyang完成签到,获得积分10
11秒前
方班术发布了新的文献求助10
11秒前
科研通AI6应助默客采纳,获得10
11秒前
超大杯冰摇红莓黑加仑茶完成签到,获得积分10
12秒前
星海妖魂完成签到,获得积分10
12秒前
科研通AI6应助ChaiHaobo采纳,获得10
12秒前
12秒前
12秒前
orixero应助九七采纳,获得10
13秒前
研友_VZG7GZ应助柚子加冰采纳,获得10
14秒前
14秒前
xxfsx应助Noah采纳,获得10
16秒前
17秒前
keyanzhai发布了新的文献求助10
18秒前
蔓蔓要努力完成签到,获得积分10
19秒前
20秒前
20秒前
20秒前
YAOHA发布了新的文献求助10
20秒前
22秒前
22秒前
动听千山发布了新的文献求助200
22秒前
璩qu发布了新的文献求助10
24秒前
星海妖魂发布了新的文献求助10
25秒前
tovfix发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469534
求助须知:如何正确求助?哪些是违规求助? 4572619
关于积分的说明 14336346
捐赠科研通 4499426
什么是DOI,文献DOI怎么找? 2465098
邀请新用户注册赠送积分活动 1453599
关于科研通互助平台的介绍 1428091