ADR‐Net: Context extraction network based on M‐Net for medical image segmentation

背景(考古学) 图像分割 医学影像学 网(多面体) 人工智能 萃取(化学) 分割 计算机科学 计算机视觉 图像(数学) 模式识别(心理学) 数学 地理 色谱法 考古 化学 几何学
作者
Lingyu Ji,Xiaoyan Jiang,Yongbin Gao,Zhijun Fang,Qingping Cai,Ziran Wei
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4254-4264 被引量:4
标识
DOI:10.1002/mp.14364
摘要

Purpose Medical image segmentation is an essential component of medical image analysis. Accurate segmentation can assist doctors in diagnosis and relieve their fatigue. Although several image segmentation methods based on U-Net have been proposed, their performances have been observed to be suboptimal in the case of small-sized objects. To address this shortcoming, a novel network architecture is proposed in this study to enhance segmentation performance on small medical targets. Methods In this paper, we propose a joint multi-scale context attention network architecture to simultaneously capture higher level semantic information and spatial information. In order to obtain a greater number of feature maps during decoding, the network concatenates the images of side inputs by down-sampling during the encoding phase. In the bottleneck layer of the network, dense atrous convolution (DAC) and multi-scale residual pyramid pooling (RMP) modules are exploited to better capture high-level semantic information and spatial information. To improve the segmentation performance on small targets, the attention gate (AG) block is used to effectively suppress feature activation in uncorrelated regions and highlight the target area. Results The proposed model is first evaluated on the public dataset DRIVE, on which it performs significantly better than the basic framework in terms of sensitivity (SE), intersection-over-union (IOU), and area under the receiver operating characteristic curve (AUC). In particular, the SE and IOU are observed to increase by 7.46% and 5.97%, respectively. Further, the evaluation indices exhibit improvements compared to those of state-of-the-art methods as well, with SE and IOU increasing by 3.58% and 3.26%, respectively. Additionally, in order to demonstrate the generalizability of the proposed architecture, we evaluate our model on three other challenging datasets. The respective performances are observed to be better than those of state-of-the-art network architectures on the same datasets. Moreover, we use lung segmentation as a comparative experiment to demonstrate the transferability of the advantageous properties of the proposed approach in the context of small target segmentation to the segmentation of large targets. Finally, an ablation study is conducted to investigate the individual contributions of the AG block, the DAC block, and the RMP block to the performance of the network. Conclusions The proposed method is evaluated on various datasets. Experimental results demonstrate that the proposed model performs better than state-of-the-art methods in medical image segmentation of small targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小羊羊发布了新的文献求助10
刚刚
刚刚
刚刚
WangBK发布了新的文献求助10
刚刚
刚刚
bkagyin应助刘雨佳采纳,获得10
1秒前
hhhee完成签到,获得积分10
1秒前
1秒前
xjc发布了新的文献求助10
2秒前
天天快乐应助盛隆采纳,获得10
2秒前
超人会飞233完成签到,获得积分20
2秒前
wind发布了新的文献求助10
2秒前
张张张完成签到,获得积分20
3秒前
3秒前
儒雅的雁山完成签到 ,获得积分10
3秒前
科研通AI6应助超级王国采纳,获得10
3秒前
4秒前
4秒前
5秒前
笑点低的咖啡完成签到,获得积分10
5秒前
er发布了新的文献求助10
5秒前
久某完成签到,获得积分20
6秒前
小羊完成签到,获得积分10
6秒前
Lucas应助yjf采纳,获得10
6秒前
ljq完成签到,获得积分10
6秒前
小羊羊完成签到,获得积分20
7秒前
陽15完成签到,获得积分10
7秒前
7秒前
7秒前
li完成签到,获得积分10
7秒前
吴中雪完成签到,获得积分10
8秒前
8秒前
月游于海完成签到,获得积分10
8秒前
CipherSage应助解羽采纳,获得10
8秒前
小石头发布了新的文献求助10
8秒前
8秒前
共享精神应助spw采纳,获得10
8秒前
于沁冉发布了新的文献求助10
8秒前
科研通AI5应助mhq采纳,获得10
10秒前
hhhee发布了新的文献求助10
10秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5154942
求助须知:如何正确求助?哪些是违规求助? 4350694
关于积分的说明 13546246
捐赠科研通 4193517
什么是DOI,文献DOI怎么找? 2299960
邀请新用户注册赠送积分活动 1299897
关于科研通互助平台的介绍 1244949