ADR‐Net: Context extraction network based on M‐Net for medical image segmentation

背景(考古学) 图像分割 医学影像学 网(多面体) 人工智能 萃取(化学) 分割 计算机科学 计算机视觉 图像(数学) 模式识别(心理学) 数学 地理 色谱法 考古 化学 几何学
作者
Lingyu Ji,Xiaoyan Jiang,Yongbin Gao,Zhijun Fang,Qingping Cai,Ziran Wei
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4254-4264 被引量:4
标识
DOI:10.1002/mp.14364
摘要

Purpose Medical image segmentation is an essential component of medical image analysis. Accurate segmentation can assist doctors in diagnosis and relieve their fatigue. Although several image segmentation methods based on U-Net have been proposed, their performances have been observed to be suboptimal in the case of small-sized objects. To address this shortcoming, a novel network architecture is proposed in this study to enhance segmentation performance on small medical targets. Methods In this paper, we propose a joint multi-scale context attention network architecture to simultaneously capture higher level semantic information and spatial information. In order to obtain a greater number of feature maps during decoding, the network concatenates the images of side inputs by down-sampling during the encoding phase. In the bottleneck layer of the network, dense atrous convolution (DAC) and multi-scale residual pyramid pooling (RMP) modules are exploited to better capture high-level semantic information and spatial information. To improve the segmentation performance on small targets, the attention gate (AG) block is used to effectively suppress feature activation in uncorrelated regions and highlight the target area. Results The proposed model is first evaluated on the public dataset DRIVE, on which it performs significantly better than the basic framework in terms of sensitivity (SE), intersection-over-union (IOU), and area under the receiver operating characteristic curve (AUC). In particular, the SE and IOU are observed to increase by 7.46% and 5.97%, respectively. Further, the evaluation indices exhibit improvements compared to those of state-of-the-art methods as well, with SE and IOU increasing by 3.58% and 3.26%, respectively. Additionally, in order to demonstrate the generalizability of the proposed architecture, we evaluate our model on three other challenging datasets. The respective performances are observed to be better than those of state-of-the-art network architectures on the same datasets. Moreover, we use lung segmentation as a comparative experiment to demonstrate the transferability of the advantageous properties of the proposed approach in the context of small target segmentation to the segmentation of large targets. Finally, an ablation study is conducted to investigate the individual contributions of the AG block, the DAC block, and the RMP block to the performance of the network. Conclusions The proposed method is evaluated on various datasets. Experimental results demonstrate that the proposed model performs better than state-of-the-art methods in medical image segmentation of small targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
搜集达人应助小娄采纳,获得10
1秒前
歪比巴卜发布了新的文献求助20
1秒前
1秒前
柴柴柴发布了新的文献求助10
1秒前
思琪HMH完成签到,获得积分10
2秒前
如7而至完成签到,获得积分10
3秒前
煊陌完成签到 ,获得积分10
5秒前
鲁楠完成签到,获得积分10
9秒前
万能图书馆应助简单宛秋采纳,获得10
10秒前
科研通AI5应助JJ采纳,获得10
10秒前
Akim应助HHEHK采纳,获得10
11秒前
13秒前
ICEBLUE完成签到,获得积分10
15秒前
Azhou完成签到,获得积分10
16秒前
CodeCraft应助dongdong采纳,获得10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
友芸发布了新的文献求助20
17秒前
veronicaaaa完成签到,获得积分10
18秒前
19秒前
无恙发布了新的文献求助10
19秒前
20秒前
dong应助安白采纳,获得10
20秒前
田様应助LY豪采纳,获得10
21秒前
21秒前
小丑发布了新的文献求助10
24秒前
生气来找我完成签到,获得积分10
25秒前
25秒前
oookkay发布了新的文献求助10
25秒前
冷水发布了新的文献求助10
25秒前
粥喝不喝发布了新的文献求助10
25秒前
26秒前
27秒前
细心柚子发布了新的文献求助10
27秒前
28秒前
28秒前
机灵晓露关注了科研通微信公众号
29秒前
小奎完成签到,获得积分10
29秒前
梦锂铧完成签到,获得积分10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975922
求助须知:如何正确求助?哪些是违规求助? 3520226
关于积分的说明 11201711
捐赠科研通 3256720
什么是DOI,文献DOI怎么找? 1798423
邀请新用户注册赠送积分活动 877576
科研通“疑难数据库(出版商)”最低求助积分说明 806452