ADR‐Net: Context extraction network based on M‐Net for medical image segmentation

背景(考古学) 图像分割 医学影像学 网(多面体) 人工智能 萃取(化学) 分割 计算机科学 计算机视觉 图像(数学) 模式识别(心理学) 数学 地理 色谱法 考古 化学 几何学
作者
Lingyu Ji,Xiaoyan Jiang,Yongbin Gao,Zhijun Fang,Qingping Cai,Ziran Wei
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4254-4264 被引量:4
标识
DOI:10.1002/mp.14364
摘要

Purpose Medical image segmentation is an essential component of medical image analysis. Accurate segmentation can assist doctors in diagnosis and relieve their fatigue. Although several image segmentation methods based on U-Net have been proposed, their performances have been observed to be suboptimal in the case of small-sized objects. To address this shortcoming, a novel network architecture is proposed in this study to enhance segmentation performance on small medical targets. Methods In this paper, we propose a joint multi-scale context attention network architecture to simultaneously capture higher level semantic information and spatial information. In order to obtain a greater number of feature maps during decoding, the network concatenates the images of side inputs by down-sampling during the encoding phase. In the bottleneck layer of the network, dense atrous convolution (DAC) and multi-scale residual pyramid pooling (RMP) modules are exploited to better capture high-level semantic information and spatial information. To improve the segmentation performance on small targets, the attention gate (AG) block is used to effectively suppress feature activation in uncorrelated regions and highlight the target area. Results The proposed model is first evaluated on the public dataset DRIVE, on which it performs significantly better than the basic framework in terms of sensitivity (SE), intersection-over-union (IOU), and area under the receiver operating characteristic curve (AUC). In particular, the SE and IOU are observed to increase by 7.46% and 5.97%, respectively. Further, the evaluation indices exhibit improvements compared to those of state-of-the-art methods as well, with SE and IOU increasing by 3.58% and 3.26%, respectively. Additionally, in order to demonstrate the generalizability of the proposed architecture, we evaluate our model on three other challenging datasets. The respective performances are observed to be better than those of state-of-the-art network architectures on the same datasets. Moreover, we use lung segmentation as a comparative experiment to demonstrate the transferability of the advantageous properties of the proposed approach in the context of small target segmentation to the segmentation of large targets. Finally, an ablation study is conducted to investigate the individual contributions of the AG block, the DAC block, and the RMP block to the performance of the network. Conclusions The proposed method is evaluated on various datasets. Experimental results demonstrate that the proposed model performs better than state-of-the-art methods in medical image segmentation of small targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打工小房应助可靠的如之采纳,获得30
刚刚
刚刚
刚刚
英俊的铭应助外向薯片采纳,获得10
刚刚
1秒前
betty完成签到,获得积分10
1秒前
1秒前
grh发布了新的文献求助10
1秒前
研友_VZG7GZ应助繁荣的夏烟采纳,获得10
2秒前
英俊的铭应助谨慎嫣然采纳,获得10
2秒前
清新的雁凡完成签到,获得积分10
3秒前
4秒前
4秒前
wkjfh举报cd求助涉嫌违规
4秒前
人类后腿发布了新的文献求助10
5秒前
5秒前
HCT发布了新的文献求助10
6秒前
小马驹发布了新的文献求助10
6秒前
多米发布了新的文献求助10
6秒前
6秒前
共享精神应助荃芏采纳,获得10
7秒前
伊蕾娜是我老婆完成签到 ,获得积分10
7秒前
Ana_Chunyi完成签到,获得积分10
7秒前
Hello应助WangXuerong采纳,获得10
8秒前
8秒前
lipppfff发布了新的文献求助10
9秒前
Hello应助grh采纳,获得10
9秒前
YY发布了新的文献求助10
9秒前
今后应助出海流浪采纳,获得10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
科目三应助田鑫智采纳,获得10
10秒前
桐桐完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
Maruko_0_完成签到,获得积分10
11秒前
11秒前
李健应助就这采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4988550
求助须知:如何正确求助?哪些是违规求助? 4237967
关于积分的说明 13201204
捐赠科研通 4031812
什么是DOI,文献DOI怎么找? 2205890
邀请新用户注册赠送积分活动 1217227
关于科研通互助平台的介绍 1135383