ADR‐Net: Context extraction network based on M‐Net for medical image segmentation

背景(考古学) 图像分割 医学影像学 网(多面体) 人工智能 萃取(化学) 分割 计算机科学 计算机视觉 图像(数学) 模式识别(心理学) 数学 地理 色谱法 考古 化学 几何学
作者
Lingyu Ji,Xiaoyan Jiang,Yongbin Gao,Zhijun Fang,Qingping Cai,Ziran Wei
出处
期刊:Medical Physics [Wiley]
卷期号:47 (9): 4254-4264 被引量:4
标识
DOI:10.1002/mp.14364
摘要

Purpose Medical image segmentation is an essential component of medical image analysis. Accurate segmentation can assist doctors in diagnosis and relieve their fatigue. Although several image segmentation methods based on U-Net have been proposed, their performances have been observed to be suboptimal in the case of small-sized objects. To address this shortcoming, a novel network architecture is proposed in this study to enhance segmentation performance on small medical targets. Methods In this paper, we propose a joint multi-scale context attention network architecture to simultaneously capture higher level semantic information and spatial information. In order to obtain a greater number of feature maps during decoding, the network concatenates the images of side inputs by down-sampling during the encoding phase. In the bottleneck layer of the network, dense atrous convolution (DAC) and multi-scale residual pyramid pooling (RMP) modules are exploited to better capture high-level semantic information and spatial information. To improve the segmentation performance on small targets, the attention gate (AG) block is used to effectively suppress feature activation in uncorrelated regions and highlight the target area. Results The proposed model is first evaluated on the public dataset DRIVE, on which it performs significantly better than the basic framework in terms of sensitivity (SE), intersection-over-union (IOU), and area under the receiver operating characteristic curve (AUC). In particular, the SE and IOU are observed to increase by 7.46% and 5.97%, respectively. Further, the evaluation indices exhibit improvements compared to those of state-of-the-art methods as well, with SE and IOU increasing by 3.58% and 3.26%, respectively. Additionally, in order to demonstrate the generalizability of the proposed architecture, we evaluate our model on three other challenging datasets. The respective performances are observed to be better than those of state-of-the-art network architectures on the same datasets. Moreover, we use lung segmentation as a comparative experiment to demonstrate the transferability of the advantageous properties of the proposed approach in the context of small target segmentation to the segmentation of large targets. Finally, an ablation study is conducted to investigate the individual contributions of the AG block, the DAC block, and the RMP block to the performance of the network. Conclusions The proposed method is evaluated on various datasets. Experimental results demonstrate that the proposed model performs better than state-of-the-art methods in medical image segmentation of small targets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mue发布了新的文献求助10
刚刚
1秒前
幽默翎发布了新的文献求助10
1秒前
我是老大应助sciress采纳,获得10
2秒前
汤姆完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
Sayhai发布了新的文献求助10
10秒前
weiv完成签到,获得积分10
10秒前
LMR完成签到 ,获得积分10
10秒前
11秒前
hhh完成签到,获得积分10
11秒前
小张完成签到,获得积分10
11秒前
11秒前
12秒前
晓亮完成签到,获得积分10
13秒前
TIDG完成签到,获得积分10
14秒前
立夏完成签到,获得积分10
14秒前
果味叶完成签到,获得积分10
14秒前
洁净灭男发布了新的文献求助10
14秒前
HEHNJJ完成签到,获得积分10
14秒前
苹果河马完成签到,获得积分10
15秒前
研友_8DoPDZ完成签到,获得积分0
16秒前
17秒前
18秒前
19秒前
浮游应助专注的惜天采纳,获得10
19秒前
量子星尘发布了新的文献求助50
19秒前
20秒前
May完成签到,获得积分10
20秒前
21秒前
123456发布了新的文献求助10
22秒前
晶晶完成签到,获得积分10
22秒前
深情安青应助淡定采纳,获得10
23秒前
自觉灵波完成签到 ,获得积分10
24秒前
惜名发布了新的文献求助30
24秒前
顾矜应助雪白雪卉采纳,获得30
24秒前
25秒前
初淇发布了新的文献求助10
25秒前
sciress完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601793
求助须知:如何正确求助?哪些是违规求助? 4011315
关于积分的说明 12418979
捐赠科研通 3691357
什么是DOI,文献DOI怎么找? 2035038
邀请新用户注册赠送积分活动 1068322
科研通“疑难数据库(出版商)”最低求助积分说明 952852