A Domain-Specific Bayesian Deep-Learning Approach for Air Pollution Forecast

可解释性 人工智能 计算机科学 深度学习 机器学习 领域知识 贝叶斯概率 特征(语言学) 领域(数学分析) 符号 期限(时间) 数据挖掘 数学 数学分析 哲学 语言学 物理 算术 量子力学
作者
Yang Han,Jacqueline C. K. Lam,Victor O. K. Li,Qi Zhang
出处
期刊:IEEE Transactions on Big Data [IEEE Computer Society]
卷期号:8 (4): 1034-1046 被引量:42
标识
DOI:10.1109/tbdata.2020.3005368
摘要

Predicting air pollution concentration is crucial and beneficial for public health. This study proposes a domain-specific Bayesian deep-learning model for long-term air pollution forecast in China and the United Kingdom. Our proposed model carries three novelties: First, a domain-specific knowledge is integrated to take into account the strong statistical relationship between PM $_{2.5}$ and PM $_{10}$ as a regularization term; Second, an attention layer is included to capture the influential historical feature and the recursive temporal correlation of air quality data; Third, results generated from different multi-step forecast strategies are combined based on corresponding uncertainty measures to improve our model’s performance. Our model outperforms other baseline models. Results show that incorporating Bayesian and domain-specific knowledge into the deep learning model can reduce the prediction errors by a maximum of 3.7% and 12.4%, for Beijing and London, respectively. Specifically, incorporating domain-specific knowledge into the Bayesian deep-learning model reduces prediction errors whilst the integration of Bayesian techniques allows the fusion of different forecast strategies to improve prediction accuracy. In future, additional influential domain-specific features can be added to further improve our deep-learning model’s prediction accuracy and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
3秒前
李明完成签到 ,获得积分10
5秒前
科研通AI6应助绿颜色采纳,获得10
5秒前
5秒前
野性的曼香完成签到 ,获得积分10
5秒前
领导范儿应助Jimmy Ko采纳,获得10
5秒前
共渡完成签到,获得积分10
6秒前
6秒前
可爱的函函应助一二采纳,获得10
8秒前
苏紫梗桔发布了新的文献求助10
9秒前
123发布了新的文献求助10
10秒前
aaaaa完成签到,获得积分10
11秒前
不再选择完成签到,获得积分10
13秒前
cheese完成签到,获得积分10
16秒前
16秒前
orixero应助可不可以采纳,获得10
18秒前
浮游应助璆璆的虾采纳,获得10
19秒前
云蓝完成签到 ,获得积分10
24秒前
高贵的水杯完成签到,获得积分10
24秒前
wenjuan给wenjuan的求助进行了留言
26秒前
小二郎应助lyh采纳,获得10
26秒前
30秒前
30秒前
小程完成签到 ,获得积分10
32秒前
33秒前
34秒前
34秒前
hh完成签到 ,获得积分20
34秒前
史杜旦腾发布了新的文献求助10
34秒前
37秒前
田様应助机灵的乘云采纳,获得30
37秒前
xcgh给玉面手雷王的求助进行了留言
38秒前
38秒前
FashionBoy应助MakiseKurisu采纳,获得10
38秒前
40秒前
41秒前
colormeblue完成签到 ,获得积分10
41秒前
42秒前
43秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5225839
求助须知:如何正确求助?哪些是违规求助? 4397471
关于积分的说明 13686412
捐赠科研通 4261957
什么是DOI,文献DOI怎么找? 2338829
邀请新用户注册赠送积分活动 1336245
关于科研通互助平台的介绍 1292194