清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Domain-Specific Bayesian Deep-Learning Approach for Air Pollution Forecast

可解释性 人工智能 计算机科学 深度学习 机器学习 领域知识 贝叶斯概率 特征(语言学) 领域(数学分析) 符号 期限(时间) 数据挖掘 数学 量子力学 算术 物理 数学分析 哲学 语言学
作者
Yang Han,Jacqueline C. K. Lam,Victor O. K. Li,Qi Zhang
出处
期刊:IEEE Transactions on Big Data [Institute of Electrical and Electronics Engineers]
卷期号:8 (4): 1034-1046 被引量:48
标识
DOI:10.1109/tbdata.2020.3005368
摘要

Predicting air pollution concentration is crucial and beneficial for public health. This study proposes a domain-specific Bayesian deep-learning model for long-term air pollution forecast in China and the United Kingdom. Our proposed model carries three novelties: First, a domain-specific knowledge is integrated to take into account the strong statistical relationship between PM $_{2.5}$ and PM $_{10}$ as a regularization term; Second, an attention layer is included to capture the influential historical feature and the recursive temporal correlation of air quality data; Third, results generated from different multi-step forecast strategies are combined based on corresponding uncertainty measures to improve our model’s performance. Our model outperforms other baseline models. Results show that incorporating Bayesian and domain-specific knowledge into the deep learning model can reduce the prediction errors by a maximum of 3.7% and 12.4%, for Beijing and London, respectively. Specifically, incorporating domain-specific knowledge into the Bayesian deep-learning model reduces prediction errors whilst the integration of Bayesian techniques allows the fusion of different forecast strategies to improve prediction accuracy. In future, additional influential domain-specific features can be added to further improve our deep-learning model’s prediction accuracy and interpretability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清秋夜露白完成签到,获得积分10
2秒前
NexusExplorer应助Xiu采纳,获得10
10秒前
19秒前
Xiu完成签到,获得积分10
20秒前
Xiu发布了新的文献求助10
24秒前
Mine完成签到,获得积分10
26秒前
蝎子莱莱xth完成签到,获得积分10
37秒前
氢锂钠钾铷铯钫完成签到,获得积分10
42秒前
samchen完成签到,获得积分10
45秒前
Square完成签到,获得积分10
49秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Jasper应助懦弱的问芙采纳,获得10
1分钟前
小烦同学完成签到,获得积分10
1分钟前
披着羊皮的狼完成签到 ,获得积分10
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
大模型应助科研通管家采纳,获得10
2分钟前
羊羔蓉完成签到,获得积分10
2分钟前
2分钟前
练得身形似鹤形完成签到 ,获得积分10
2分钟前
TEMPO发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
SciGPT应助lyh的老公采纳,获得10
4分钟前
喜悦向日葵完成签到 ,获得积分10
4分钟前
王0535完成签到,获得积分10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
5分钟前
qiongqiong完成签到 ,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715110
求助须知:如何正确求助?哪些是违规求助? 5230494
关于积分的说明 15274024
捐赠科研通 4866165
什么是DOI,文献DOI怎么找? 2612734
邀请新用户注册赠送积分活动 1562936
关于科研通互助平台的介绍 1520260