甲状腺癌
基因
计算生物学
生物
小桶
癌症
甲状腺乳突癌
生物信息学
基因表达
基因本体论
遗传学
作者
Lu Liu,Chen He,Qing Zhou,Ganlu Wang,Zhiwu Lv,Jintao Liu
摘要
Abstract Thyroid cancer is a common endocrine malignancy with a rapidly increasing incidence worldwide. Although its mortality is steady or declining because of earlier diagnoses, its survival rate varies because of different tumour types. Thus, the aim of this study was to identify key biomarkers and novel therapeutic targets in thyroid cancer. The expression profiles of GSE3467, GSE5364, GSE29265 and GSE53157 were downloaded from the Gene Expression Omnibus database, which included a total of 97 thyroid cancer and 48 normal samples. After screening significant differentially expressed genes (DEGs) in each data set, we used the robust rank aggregation method to identify 358 robust DEGs, including 135 upregulated and 224 downregulated genes, in four datasets. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses of DEGs were performed by DAVID and the KOBAS online database, respectively. The results showed that these DEGs were significantly enriched in various cancer‐related functions and pathways. Then, the STRING database was used to construct the protein–protein interaction network, and modules analysis was performed. Finally, we filtered out five hub genes, including LPAR5, NMU, FN1, NPY1R , and CXCL12 , from the whole network. Expression validation and survival analysis of these hub genes based on the The Cancer Genome Atlas database suggested the robustness of the above results. In conclusion, these results provided novel and reliable biomarkers for thyroid cancer, which will be useful for further clinical applications in thyroid cancer diagnosis, prognosis and targeted therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI