Identification of key genes and pathways of thyroid cancer by integrated bioinformatics analysis

甲状腺癌 基因 计算生物学 生物 小桶 癌症 甲状腺乳突癌 生物信息学 基因表达 基因本体论 遗传学
作者
Lu Liu,Chen He,Qing Zhou,Ganlu Wang,Zhiwu Lv,Jintao Liu
出处
期刊:Journal of Cellular Physiology [Wiley]
卷期号:234 (12): 23647-23657 被引量:59
标识
DOI:10.1002/jcp.28932
摘要

Abstract Thyroid cancer is a common endocrine malignancy with a rapidly increasing incidence worldwide. Although its mortality is steady or declining because of earlier diagnoses, its survival rate varies because of different tumour types. Thus, the aim of this study was to identify key biomarkers and novel therapeutic targets in thyroid cancer. The expression profiles of GSE3467, GSE5364, GSE29265 and GSE53157 were downloaded from the Gene Expression Omnibus database, which included a total of 97 thyroid cancer and 48 normal samples. After screening significant differentially expressed genes (DEGs) in each data set, we used the robust rank aggregation method to identify 358 robust DEGs, including 135 upregulated and 224 downregulated genes, in four datasets. Gene Ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analyses of DEGs were performed by DAVID and the KOBAS online database, respectively. The results showed that these DEGs were significantly enriched in various cancer‐related functions and pathways. Then, the STRING database was used to construct the protein–protein interaction network, and modules analysis was performed. Finally, we filtered out five hub genes, including LPAR5, NMU, FN1, NPY1R , and CXCL12 , from the whole network. Expression validation and survival analysis of these hub genes based on the The Cancer Genome Atlas database suggested the robustness of the above results. In conclusion, these results provided novel and reliable biomarkers for thyroid cancer, which will be useful for further clinical applications in thyroid cancer diagnosis, prognosis and targeted therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww发布了新的文献求助10
刚刚
聂学雨发布了新的文献求助10
刚刚
领导范儿应助流流采纳,获得10
刚刚
万能图书馆应助poohpooh采纳,获得10
刚刚
Japrin完成签到,获得积分10
1秒前
xw关注了科研通微信公众号
1秒前
1秒前
寒冷靖易发布了新的文献求助10
2秒前
小木君君完成签到 ,获得积分10
2秒前
huanghao发布了新的文献求助10
2秒前
打打应助大胆的惜珊采纳,获得10
3秒前
eschew完成签到,获得积分10
3秒前
雨肖发布了新的文献求助10
3秒前
鬼先生发布了新的文献求助10
3秒前
5秒前
5秒前
子车谷波完成签到,获得积分10
5秒前
传奇3应助漂亮幻莲采纳,获得10
5秒前
5秒前
晏图完成签到,获得积分10
6秒前
李妹妹啦发布了新的文献求助10
6秒前
yeurekar完成签到,获得积分10
6秒前
爆米花应助细心怜寒采纳,获得10
6秒前
科研辉完成签到,获得积分10
7秒前
7秒前
7秒前
mouxq发布了新的文献求助10
7秒前
8秒前
111发布了新的文献求助10
8秒前
欣喜大门发布了新的文献求助10
8秒前
9秒前
9秒前
limin发布了新的文献求助30
9秒前
10秒前
机灵听枫发布了新的文献求助10
10秒前
hzh完成签到,获得积分10
10秒前
忧伤的听白完成签到,获得积分20
11秒前
wer完成签到 ,获得积分10
11秒前
11秒前
kexing发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135677
求助须知:如何正确求助?哪些是违规求助? 2786507
关于积分的说明 7777976
捐赠科研通 2442633
什么是DOI,文献DOI怎么找? 1298612
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600847