Long-Life, Ultrahigh-Nickel Cathodes with Excellent Air Storage Stability for High-Energy Density Lithium-Based Batteries

阴极 材料科学 锂(药物) 磷酸 化学工程 储能 降级(电信) 容量损失 相间 电解质 电极 电化学 纳米技术 冶金 化学 电气工程 生物 物理 工程类 内分泌学 物理化学 功率(物理) 医学 量子力学 遗传学
作者
Qiang Xie,Arumugam Manthiram
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:32 (17): 7413-7424 被引量:55
标识
DOI:10.1021/acs.chemmater.0c02374
摘要

With an increased energy density and cost advantage, ultrahigh-nickel layered oxides (LiNixM1 – xO2, x = 0.9–1.0) are becoming a front-runner as cathodes for next-generation lithium-based batteries, yet their commercialization is blocked both by severe capacity fade and exponentially aggravated air degradation. Thus, it is imperative to find effective solutions to address these issues simultaneously. Here, a significant enhancement in both cycling and air storage stability of the ultrahigh-Ni cathode LiNi0.94Co0.06O2 is achieved via a distinctive phosphoric acid treatment strategy. The modified cathode displays remarkably improved capacity retention (from 36 to 80% after 1000 cycles) and rate capability (from 0 to 105 mA h g–1 at a 30C rate) in pouch cells. Impressively, the modified cathode, after air storage for 450 days, maintains the morphology and 92% of the initial capacity of the fresh sample with excellent cyclability. Comprehensive interphase and structural analyses reveal that the enhanced electrochemical performance is due to a highly stabilized electrode/electrolyte interphase that suppresses electrode corrosion and lattice reconstruction. The excellent air stability results from an adsorption-buffering effect enabled by phosphoric acid to air attack. The study demonstrates an engineering pathway to improve cycling and air stability, facilitating the practical viability of high-capacity, affordable, ultrahigh-Ni cathodes in lithium-based batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
妮妮完成签到 ,获得积分10
3秒前
3秒前
傲娇的凡旋应助spurs17采纳,获得10
3秒前
长情若魔完成签到,获得积分10
5秒前
XM完成签到,获得积分10
5秒前
5秒前
LQW发布了新的文献求助30
5秒前
大个应助Rrr采纳,获得10
5秒前
6秒前
7秒前
7秒前
9秒前
zfy完成签到,获得积分10
9秒前
10秒前
11秒前
11秒前
11秒前
w17638619025完成签到 ,获得积分20
12秒前
撒上咖啡应助科研通管家采纳,获得10
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
13秒前
菠萝吹雪应助科研通管家采纳,获得30
13秒前
13秒前
Jasper应助科研通管家采纳,获得10
13秒前
酷波er应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
李爱国应助科研通管家采纳,获得10
13秒前
13秒前
西内!卡Q因完成签到,获得积分10
14秒前
我是125应助www采纳,获得10
14秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
14秒前
Zzzzzzzzzzz发布了新的文献求助10
14秒前
长情若魔发布了新的文献求助10
14秒前
酷酷酷完成签到,获得积分10
15秒前
15秒前
BaekHyun发布了新的文献求助10
16秒前
xuex1发布了新的文献求助10
16秒前
孙皓然完成签到 ,获得积分10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808