3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0

卷积神经网络 无症状的 人工智能 超声波 医学 模式识别(心理学) 易损斑块 放射科 生物医学工程 计算机科学 病理
作者
Sanagala S. Skandha,Suneet Gupta,Luca Saba,Vijaya Kumar Koppula,Amer M. Johri,Narendra N. Khanna,Sophie Mavrogeni,John R. Laird,Gyan Pareek,Martin Miner,Petros P. Sfikakis,Athanase D. Protogerou,Durga Prasanna Misra,Vikas Agarwal,Aditya Sharma,Vijay Viswanathan,Vijay Rathore,Monika Turk,Raghu Kolluri,Klaudija Višković,Elisa Cuadrado‐Godia,George D. Kitas,Andrew Nicolaides,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:125: 103958-103958 被引量:63
标识
DOI:10.1016/j.compbiomed.2020.103958
摘要

Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%–10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
搜集达人应助全若之采纳,获得10
2秒前
2秒前
xiangeyedu发布了新的文献求助10
3秒前
3秒前
SaqLa完成签到,获得积分10
3秒前
HXY发布了新的文献求助30
4秒前
华仔应助晨晨采纳,获得30
5秒前
科目三应助小卫采纳,获得10
5秒前
内向雨南完成签到,获得积分10
6秒前
zgliu78完成签到,获得积分10
6秒前
思源应助zhaosh采纳,获得10
7秒前
7秒前
小马甲应助第八维采纳,获得30
8秒前
贺呵呵发布了新的文献求助10
8秒前
8秒前
酷波er应助HSD采纳,获得10
8秒前
8秒前
Dasiliy完成签到,获得积分10
8秒前
桐桐应助叁金采纳,获得30
9秒前
9秒前
领导范儿应助啦啦啦采纳,获得10
9秒前
汉堡包应助明理乐珍采纳,获得20
10秒前
10秒前
10秒前
博ge发布了新的文献求助10
11秒前
11秒前
dejavu发布了新的文献求助10
11秒前
桐桐应助直率的颜演采纳,获得10
12秒前
戴士杰686完成签到,获得积分10
13秒前
13秒前
lxcy0612发布了新的文献求助10
13秒前
fanny发布了新的文献求助10
14秒前
14秒前
Echo发布了新的文献求助10
14秒前
动静结合发布了新的文献求助20
14秒前
15秒前
15秒前
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979122
求助须知:如何正确求助?哪些是违规求助? 3522967
关于积分的说明 11215682
捐赠科研通 3260436
什么是DOI,文献DOI怎么找? 1799990
邀请新用户注册赠送积分活动 878770
科研通“疑难数据库(出版商)”最低求助积分说明 807061