3-D optimized classification and characterization artificial intelligence paradigm for cardiovascular/stroke risk stratification using carotid ultrasound-based delineated plaque: Atheromatic™ 2.0

卷积神经网络 无症状的 人工智能 超声波 医学 模式识别(心理学) 易损斑块 放射科 生物医学工程 计算机科学 病理
作者
Sanagala S. Skandha,Suneet Gupta,Luca Saba,Vijaya Kumar Koppula,Amer M. Johri,Narendra N. Khanna,Sophie Mavrogeni,John R. Laird,Gyan Pareek,Martin Miner,Petros P. Sfikakis,Athanase D. Protogerou,Durga Prasanna Misra,Vikas Agarwal,Aditya Sharma,Vijay Viswanathan,Vijay Rathore,Monika Turk,Raghu Kolluri,Klaudija Višković,Elisa Cuadrado‐Godia,George D. Kitas,Andrew Nicolaides,Jasjit S. Suri
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:125: 103958-103958 被引量:63
标识
DOI:10.1016/j.compbiomed.2020.103958
摘要

Atherosclerotic plaque tissue rupture is one of the leading causes of strokes. Early carotid plaque monitoring can help reduce cardiovascular morbidity and mortality. Manual ultrasound plaque classification and characterization methods are time-consuming and can be imprecise due to significant variations in tissue characteristics. We report a novel artificial intelligence (AI)-based plaque tissue classification and characterization system. We hypothesize that symptomatic plaque is hypoechoic due to its large lipid core and minimal collagen, as well as its heterogeneous makeup. Meanwhile, asymptomatic plaque is hyperechoic due to its small lipid core, abundant collagen, and the fact that it is often calcified. We designed a computer-aided diagnosis (CADx) system consisting of three kinds of deep learning (DL) classification paradigms: Deep Convolutional Neural Network (DCNN), Visual Geometric Group-16 (VGG16), and transfer learning, (tCNN). DCNN was 3-D optimized by varying the number of CNN layers and data augmentation frameworks. The DL systems were benchmarked against four types of machine learning (ML) classification systems, and the CADx system was characterized using two novel strategies consisting of DL mean feature strength (MFS) and a bispectrum model using higher-order spectra. After balancing symptomatic and asymptomatic plaque classes, a five-fold augmentation process was applied, yielding 1000 carotid scans in each class. Then, using a K10 protocol (trained to test the ratio of 90%–10%), tCNN and DCNN yielded accuracy (area under the curve (AUC)) pairs of 83.33%, 0.833 (p < 0.0001) and 95.66%, 0.956 (p < 0.0001), respectively. DCNN was superior to ML by 7.01%. As part of the characterization process, the MFS of the symptomatic plaque was found to be higher compared to the asymptomatic plaque by 17.5% (p < 0.0001). A similar pattern was seen in the bispectrum, which was higher for symptomatic plaque by 5.4% (p < 0.0001). It took <2 s to perform the online CADx process on a supercomputer. The performance order of the three AI systems was DCNN > tCNN > ML. Bispectrum-based on higher-order spectra proved a powerful paradigm for plaque tissue characterization. Overall, the AI-based systems offer a powerful solution for plaque tissue classification and characterization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
3秒前
科研通AI2S应助lyx采纳,获得10
4秒前
Zoe013发布了新的文献求助10
5秒前
企鹅完成签到,获得积分20
6秒前
6秒前
6秒前
天神发布了新的文献求助10
7秒前
7秒前
naturehome完成签到,获得积分10
7秒前
8秒前
顺利滑板发布了新的文献求助10
8秒前
11秒前
12秒前
小蓝发布了新的文献求助10
12秒前
科研通AI5应助allen7u采纳,获得10
12秒前
完美世界应助单薄二娘采纳,获得10
12秒前
冯俊驰发布了新的文献求助10
12秒前
12秒前
李健应助zhangjianan采纳,获得10
12秒前
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
桐桐应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得30
14秒前
乐乐应助科研通管家采纳,获得30
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
wswswsws应助科研通管家采纳,获得10
14秒前
Orange应助科研通管家采纳,获得10
14秒前
周鑫喆完成签到 ,获得积分10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得30
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
加菲丰丰应助科研通管家采纳,获得10
14秒前
科研通AI6应助科研通管家采纳,获得10
14秒前
大模型应助yeandpeng采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408