Robust Self-Sparse Fuzzy Clustering for Image Segmentation

模式识别(心理学) 图像分割 聚类分析 人工智能 基于分割的对象分类 模糊聚类 计算机科学 尺度空间分割 模糊逻辑 火焰团簇 离群值 分割 数学 CURE数据聚类算法
作者
Xiaohong Jia,Tao Lei,Xiaogang Du,Shigang Liu,Hongying Meng,Asoke K. Nandi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 146182-146195 被引量:55
标识
DOI:10.1109/access.2020.3015270
摘要

Traditional fuzzy clustering algorithms suffer from two problems in image segmentations. One is that these algorithms are sensitive to outliers due to the non-sparsity of fuzzy memberships. The other is that these algorithms often cause image over-segmentation due to the loss of image local spatial information. To address these issues, we propose a robust self-sparse fuzzy clustering algorithm (RSSFCA) for image segmentation. The proposed RSSFCA makes two contributions. The first concerns a regularization under Gaussian metric that is integrated into the objective function of fuzzy clustering algorithms to obtain fuzzy membership with sparsity, which reduces a proportion of noisy features and improves clustering results. The second concerns a connected-component filtering based on area density balance strategy (CCF-ADB) that is proposed to address the problem of image over-segmentation. Compared to the integration of local spatial information into the objective functions, the presented CCF-ADB is simpler and faster for the removal of small areas. Experimental results show that the proposed RSSFCA addresses two problems in current fuzzy clustering algorithms, i.e., the outlier sensitivity and the over-segmentation, and it provides better image segmentation results than state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高大的未来完成签到,获得积分10
刚刚
33完成签到,获得积分10
1秒前
1秒前
科目三应助科研通管家采纳,获得10
1秒前
Georges-09发布了新的文献求助10
1秒前
英姑应助科研通管家采纳,获得10
2秒前
2秒前
慕青应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得30
2秒前
深情安青应助科研通管家采纳,获得150
2秒前
2秒前
合适夜绿完成签到,获得积分10
2秒前
所所应助科研通管家采纳,获得10
2秒前
2秒前
小二郎应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
scwang应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
3秒前
Akim应助科研通管家采纳,获得10
3秒前
Ava应助Lvshy采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
3秒前
Maestro_S应助科研通管家采纳,获得10
3秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
款冬发布了新的文献求助10
4秒前
乐乐应助科研通管家采纳,获得10
4秒前
yuyu完成签到,获得积分10
4秒前
英俊的铭应助科研通管家采纳,获得10
4秒前
咖飞完成签到,获得积分10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
乐乐应助科研通管家采纳,获得30
5秒前
zyueyun发布了新的文献求助10
5秒前
zhang完成签到 ,获得积分10
5秒前
鲤鱼发布了新的文献求助10
6秒前
6秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5213567
求助须知:如何正确求助?哪些是违规求助? 4389354
关于积分的说明 13666572
捐赠科研通 4250392
什么是DOI,文献DOI怎么找? 2332050
邀请新用户注册赠送积分活动 1329737
关于科研通互助平台的介绍 1283341