Robust Self-Sparse Fuzzy Clustering for Image Segmentation

模式识别(心理学) 图像分割 聚类分析 人工智能 基于分割的对象分类 模糊聚类 计算机科学 尺度空间分割 模糊逻辑 火焰团簇 离群值 分割 数学 CURE数据聚类算法
作者
Xiaohong Jia,Tao Lei,Xiaogang Du,Shigang Liu,Hongying Meng,Asoke K. Nandi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 146182-146195 被引量:55
标识
DOI:10.1109/access.2020.3015270
摘要

Traditional fuzzy clustering algorithms suffer from two problems in image segmentations. One is that these algorithms are sensitive to outliers due to the non-sparsity of fuzzy memberships. The other is that these algorithms often cause image over-segmentation due to the loss of image local spatial information. To address these issues, we propose a robust self-sparse fuzzy clustering algorithm (RSSFCA) for image segmentation. The proposed RSSFCA makes two contributions. The first concerns a regularization under Gaussian metric that is integrated into the objective function of fuzzy clustering algorithms to obtain fuzzy membership with sparsity, which reduces a proportion of noisy features and improves clustering results. The second concerns a connected-component filtering based on area density balance strategy (CCF-ADB) that is proposed to address the problem of image over-segmentation. Compared to the integration of local spatial information into the objective functions, the presented CCF-ADB is simpler and faster for the removal of small areas. Experimental results show that the proposed RSSFCA addresses two problems in current fuzzy clustering algorithms, i.e., the outlier sensitivity and the over-segmentation, and it provides better image segmentation results than state-of-the-art algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
不上课不行完成签到,获得积分10
2秒前
再干一杯完成签到,获得积分10
2秒前
3秒前
汉堡包应助rudjs采纳,获得10
4秒前
4秒前
zsyzxb发布了新的文献求助10
5秒前
东东发布了新的文献求助10
5秒前
zena92发布了新的文献求助10
6秒前
锤子米完成签到,获得积分10
6秒前
6秒前
赤练仙子完成签到,获得积分10
8秒前
MnO2fff应助zsyzxb采纳,获得20
11秒前
kingwill应助zsyzxb采纳,获得20
11秒前
顺利鱼完成签到,获得积分10
12秒前
14秒前
15秒前
Xx.完成签到,获得积分10
16秒前
星辰大海应助内向凌兰采纳,获得10
16秒前
16秒前
wuzhizhiya完成签到,获得积分10
17秒前
18秒前
rudjs发布了新的文献求助10
18秒前
21秒前
Ava应助何糖采纳,获得10
21秒前
桐桐应助美丽的芷烟采纳,获得10
21秒前
野子完成签到,获得积分10
22秒前
情怀应助小D采纳,获得30
23秒前
yuan发布了新的文献求助10
23秒前
berry发布了新的文献求助10
24秒前
24秒前
淡淡采白发布了新的文献求助10
25秒前
思源应助勤恳慕蕊采纳,获得10
25秒前
知犯何逆完成签到 ,获得积分10
26秒前
啊哈完成签到,获得积分10
26秒前
27秒前
27秒前
Draven完成签到 ,获得积分10
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808